cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A114154 Triangle, read by rows, given by the product R^3*Q^-2 using triangular matrices Q=A113381, R=A113389.

Original entry on oeis.org

1, 5, 1, 45, 8, 1, 635, 120, 11, 1, 12815, 2556, 231, 14, 1, 343815, 71548, 6556, 378, 17, 1, 11651427, 2508528, 233706, 13391, 561, 20, 1, 480718723, 106427700, 10069521, 579047, 23817, 780, 23, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Comments

Complementary to A114155, which gives Q^-2*P^3.

Examples

			Triangle R^3*Q^-2 begins:
1;
5,1;
45,8,1;
635,120,11,1;
12815,2556,231,14,1;
343815,71548,6556,378,17,1; ...
Compare to Q (A113381):
1;
2,1;
6,5,1;
37,45,8,1;
429,635,120,11,1;
7629,12815,2556,231,14,1; ...
Thus R^3*Q^-2 equals Q shift left one column.
		

Crossrefs

Cf. A113394 (R^3), A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114155 (Q^-2*P^3); A114156 (P^-1), A114158 (Q^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^3*Q^-2)[n+1,k+1]

A114158 Triangle, read by rows, equal to the matrix inverse of Q=A113381.

Original entry on oeis.org

1, -2, 1, 4, -5, 1, 21, -5, -8, 1, 130, 20, -32, -11, 1, 1106, 840, -260, -77, -14, 1, 10044, 24865, -2584, -1089, -140, -17, 1, -18366, 823383, -12828, -21428, -2737, -221, -20, 1, -9321125, 31847653, 1160956, -523831, -73458, -5474, -320, -23, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Examples

			Triangle Q^-1 begins:
1;
-2,1;
4,-5,1;
21,-5,-8,1;
130,20,-32,-11,1;
1106,840,-260,-77,-14,1;
10044,24865,-2584,-1089,-140,-17,1;
-18366,823383,-12828,-21428,-2737,-221,-20,1; ...
Triangle Q^-2 begins:
1;
-4,1;
18,-10,1;
20,30,-16,1;
-139,255,24,-22,1;
-3945,3085,544,0,-28,1;
-99849,51015,12444,671,-42,-34,1; ...
		

Crossrefs

Cf. A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114156 (P^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); (Q^-1)[n+1,k+1]

A114159 Triangle, read by rows, equal to the matrix inverse of R=A113389.

Original entry on oeis.org

1, -3, 1, 3, -6, 1, 35, -12, -9, 1, 396, -29, -45, -12, 1, 6237, 582, -462, -96, -15, 1, 131613, 30684, -6408, -1534, -165, -18, 1, 3518993, 1300810, -96705, -34020, -3515, -252, -21, 1, 114244366, 59124226, -764835, -944334, -102180, -6675, -357, -24, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Examples

			Triangle R^-1 begins:
  1;
  -3,1;
  3,-6,1;
  35,-12,-9,1;
  396,-29,-45,-12,1;
  6237,582,-462,-96,-15,1;
  131613,30684,-6408,-1534,-165,-18,1;
  3518993,1300810,-96705,-34020,-3515,-252,-21,1;
  ...
Triangle R^-2 begins:
  1;
  -6,1;
  24,-12,1;
  79,30,-18,1;
  324,356,18,-24,1;
  42,5523,615,-12,-30,1;
  -79346,112533,16731,640,-60,-36,1;
  ...
		

Crossrefs

Cf. A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114156 (P^-1), A114158 (Q^-1).

Programs

  • PARI
    {T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^-1)[n+1,k+1]}

A113375 Column 0 of triangle A113374, also equals column 0 of A113381.

Original entry on oeis.org

1, 2, 6, 37, 429, 7629, 185776, 5817106, 224558216, 10362978307, 558458382528, 34504326965326, 2408502186081117, 187672037804601000, 16162473554575583148, 1525578320627987001344, 156704538246796929248712
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113374, A113376 (column 1), A113377 (column 2).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+1,1]

Formula

A113374 equals the matrix square of A113370, which has the property: column k of A113370^2 = column 0 of A113381^(3*k+1) for k>=0.

A113376 Column 1 of triangle A113374, also equals column 0 of A113381^4.

Original entry on oeis.org

1, 8, 84, 1296, 27850, 784146, 27630378, 1177691946, 59169833470, 3434258845248, 226594550768662, 16775755397765720, 1378646430074005827, 124636321499378130839, 12300850874338422058685
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113374, A113375 (column 0), A113377 (column 2).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+2,2]

Formula

A113374 equals the matrix square of A113370, which has the property: column k of A113370^2 = column 0 of A113381^(3*k+1) for k>=0.

A113377 Column 2 of triangle A113374, also equals column 0 of A113381^7.

Original entry on oeis.org

1, 14, 252, 5957, 179270, 6641502, 294524076, 15285260326, 911664081027, 61573228385424, 4652227417900405, 389256081747220268, 35759870451009454561, 3580704593280285017869, 388344720309998846243731
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113374, A113375 (column 0), A113376 (column 1).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+3,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+3,3]

Formula

A113374 equals the matrix square of A113370, which has the property: column k of A113370^2 = column 0 of A113381^(3*k+1) for k>=0.

A113379 Column 0 of triangle A113378, also equals column 0 of A113389.

Original entry on oeis.org

1, 3, 15, 136, 1998, 41973, 1166263, 40747561, 1726907675, 86421647389, 5002021986418, 329382745551946, 24351172588548270, 1999205882982496161, 180613538916429940159, 17817366508243503227269
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113378, A113370, A113389, A113380 (column 1).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^3)[n+1,1]

Formula

A113378 equals the matrix cube of A113370, which has the property: column k of A113370^3 = column 0 of A113389^(3*k+1) for k>=0.

A113380 Column 1 of triangle A113378, also equals column 0 of A113389^4.

Original entry on oeis.org

1, 12, 168, 3190, 80136, 2553162, 99579994, 4624245724, 250138459808, 15488221792442, 1082305443525010, 84364431201000877, 7264439969560330768, 685338322012632405151, 70341947440289270101707
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113378, A113370, A113389, A113379 (column 0).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^3)[n+2,2]

Formula

A113378 equals the matrix cube of A113370, which has the property: column k of A113370^3 = column 0 of A113389^(3*k+1) for k>=0.
Previous Showing 21-28 of 28 results.