A114154
Triangle, read by rows, given by the product R^3*Q^-2 using triangular matrices Q=A113381, R=A113389.
Original entry on oeis.org
1, 5, 1, 45, 8, 1, 635, 120, 11, 1, 12815, 2556, 231, 14, 1, 343815, 71548, 6556, 378, 17, 1, 11651427, 2508528, 233706, 13391, 561, 20, 1, 480718723, 106427700, 10069521, 579047, 23817, 780, 23, 1
Offset: 0
Triangle R^3*Q^-2 begins:
1;
5,1;
45,8,1;
635,120,11,1;
12815,2556,231,14,1;
343815,71548,6556,378,17,1; ...
Compare to Q (A113381):
1;
2,1;
6,5,1;
37,45,8,1;
429,635,120,11,1;
7629,12815,2556,231,14,1; ...
Thus R^3*Q^-2 equals Q shift left one column.
-
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^3*Q^-2)[n+1,k+1]
A114158
Triangle, read by rows, equal to the matrix inverse of Q=A113381.
Original entry on oeis.org
1, -2, 1, 4, -5, 1, 21, -5, -8, 1, 130, 20, -32, -11, 1, 1106, 840, -260, -77, -14, 1, 10044, 24865, -2584, -1089, -140, -17, 1, -18366, 823383, -12828, -21428, -2737, -221, -20, 1, -9321125, 31847653, 1160956, -523831, -73458, -5474, -320, -23, 1
Offset: 0
Triangle Q^-1 begins:
1;
-2,1;
4,-5,1;
21,-5,-8,1;
130,20,-32,-11,1;
1106,840,-260,-77,-14,1;
10044,24865,-2584,-1089,-140,-17,1;
-18366,823383,-12828,-21428,-2737,-221,-20,1; ...
Triangle Q^-2 begins:
1;
-4,1;
18,-10,1;
20,30,-16,1;
-139,255,24,-22,1;
-3945,3085,544,0,-28,1;
-99849,51015,12444,671,-42,-34,1; ...
-
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); (Q^-1)[n+1,k+1]
A114159
Triangle, read by rows, equal to the matrix inverse of R=A113389.
Original entry on oeis.org
1, -3, 1, 3, -6, 1, 35, -12, -9, 1, 396, -29, -45, -12, 1, 6237, 582, -462, -96, -15, 1, 131613, 30684, -6408, -1534, -165, -18, 1, 3518993, 1300810, -96705, -34020, -3515, -252, -21, 1, 114244366, 59124226, -764835, -944334, -102180, -6675, -357, -24, 1
Offset: 0
Triangle R^-1 begins:
1;
-3,1;
3,-6,1;
35,-12,-9,1;
396,-29,-45,-12,1;
6237,582,-462,-96,-15,1;
131613,30684,-6408,-1534,-165,-18,1;
3518993,1300810,-96705,-34020,-3515,-252,-21,1;
...
Triangle R^-2 begins:
1;
-6,1;
24,-12,1;
79,30,-18,1;
324,356,18,-24,1;
42,5523,615,-12,-30,1;
-79346,112533,16731,640,-60,-36,1;
...
-
{T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^-1)[n+1,k+1]}
A113375
Column 0 of triangle A113374, also equals column 0 of A113381.
Original entry on oeis.org
1, 2, 6, 37, 429, 7629, 185776, 5817106, 224558216, 10362978307, 558458382528, 34504326965326, 2408502186081117, 187672037804601000, 16162473554575583148, 1525578320627987001344, 156704538246796929248712
Offset: 0
-
a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+1,1]
A113376
Column 1 of triangle A113374, also equals column 0 of A113381^4.
Original entry on oeis.org
1, 8, 84, 1296, 27850, 784146, 27630378, 1177691946, 59169833470, 3434258845248, 226594550768662, 16775755397765720, 1378646430074005827, 124636321499378130839, 12300850874338422058685
Offset: 0
-
a(n)=local(A,B);A=Mat(1);for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+2,2]
A113377
Column 2 of triangle A113374, also equals column 0 of A113381^7.
Original entry on oeis.org
1, 14, 252, 5957, 179270, 6641502, 294524076, 15285260326, 911664081027, 61573228385424, 4652227417900405, 389256081747220268, 35759870451009454561, 3580704593280285017869, 388344720309998846243731
Offset: 0
-
a(n)=local(A,B);A=Mat(1);for(m=2,n+3,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+3,3]
A113379
Column 0 of triangle A113378, also equals column 0 of A113389.
Original entry on oeis.org
1, 3, 15, 136, 1998, 41973, 1166263, 40747561, 1726907675, 86421647389, 5002021986418, 329382745551946, 24351172588548270, 1999205882982496161, 180613538916429940159, 17817366508243503227269
Offset: 0
-
a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^3)[n+1,1]
A113380
Column 1 of triangle A113378, also equals column 0 of A113389^4.
Original entry on oeis.org
1, 12, 168, 3190, 80136, 2553162, 99579994, 4624245724, 250138459808, 15488221792442, 1082305443525010, 84364431201000877, 7264439969560330768, 685338322012632405151, 70341947440289270101707
Offset: 0
-
a(n)=local(A,B);A=Mat(1);for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^3)[n+2,2]
Comments