cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A275788 a(0) = 0, a(n+1) = 2*a(n) + (-1)^floor(n/3).

Original entry on oeis.org

0, 1, 3, 7, 13, 25, 49, 99, 199, 399, 797, 1593, 3185, 6371, 12743, 25487, 50973, 101945, 203889, 407779, 815559, 1631119, 3262237, 6524473, 13048945, 26097891, 52195783, 104391567, 208783133, 417566265, 835132529, 1670265059, 3340530119, 6681060239
Offset: 0

Views

Author

Paul Curtz, Aug 09 2016

Keywords

Comments

a(n) and its successive differences:
0, 1, 3, 7, 13, 25, 49, ...
1, 2, 4, 6, 12, 24, 50, 100, ...
1, 2, 2, 6, 12, 26, 50, 100, 198, ...
1, 0, 4, 6, 14, 24, 50, 98, 200, 398, ...
-1, 4, 2, 8, 10, 26, 48, 102, 198, 400, 794, ...
5, -2, 6, 2, 16, 22, 54, 96, 202, 394, 800, 1590, ...
-7, 8, -4, 14, 6, 32, 42, 106, 192, 406, 790, 1600, 3178, ...
... .
Each row has the recurrence a(n) + a(n+3) = 7*2^n.
Main diagonal: 2*A001045(n).
Upper diagonals: A084214(n+1), 3*2^n, ... .
Subdiagonals: 2^n, A078008(n), A084214(n+1), -2^n, ... .
a(-n) = 0, 1/2, 3/4, 7/8, -1/16, -17/32, -49/64, 15/128, ... .
b(n), numerators of a(-n), and first differences:
0, 1, 3, 7, -1, -17, -49, 15, 143, 399, -113, -1137, ...
1, 2, 4, -8, -16, -32, 64, 128, 256, -512, -1024, ... = A000079(n)*A130151(n), not in the OEIS.

Examples

			a(1)=2*0+1=1, a(2)=2*1+1=3, a(2)=2*3+1=7, a(3)=2*7-1=13, a(4)=2*13-1=25, ... .
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + x + x^2)/((1 + x) (1 - 2 x) (1 - x + x^2)), {x, 0, 33}], x] (* Michael De Vlieger, Aug 11 2016 *)
    LinearRecurrence[{2,0,-1,2}, {0, 1, 3, 7}, 25] (* G. C. Greubel, Aug 16 2016 *)
  • PARI
    concat(0, Vec(x*(1+x+x^2)/((1+x)*(1-2*x)*(1-x+x^2)) + O(x^40))) \\ Colin Barker, Aug 10 2016

Formula

From Colin Barker, Aug 09 2016: (Start)
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) for n>3.
G.f.: x*(1 + x + x^2) / ((1+x)*(1-2*x)*(1-x+x^2)).
(End)
a(n+3) = 7*2^n - a(n), a(0)=0, a(1)=1, a(2)=3.

Extensions

More terms from Colin Barker, Aug 10 2016

A328881 a(n+3) = 2^n - a(n), a(0)=a(2)=1, a(1)=0 for n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 8, 14, 29, 56, 114, 227, 456, 910, 1821, 3640, 7282, 14563, 29128, 58254, 116509, 233016, 466034, 932067, 1864136, 3728270, 7456541, 14913080, 29826162, 59652323, 119304648, 238609294, 477218589, 954437176, 1908874354, 3817748707
Offset: 0

Views

Author

Paul Curtz, Oct 29 2019

Keywords

Comments

The array of a(n) and its repeated differences:
1, 0, 1, 0, 2, 3, 8, 14, ...
-1, 1, -1, 2, 1, 5, 6, 15, ...
2, -2, 3, -1, 4, 1, 9, 12, ...
-4, 5, -4, 5, -3, 8, 3, 19, ...
9, -9, 9, -8, 11, -5, 16, 5, ...
-18, 18, -17, 19, -16, 21, -11, 32, ...
36, -35, 36, -35, 37, -32, 43, -21, ...
-71, 71, -71, 72, -69, 75, -64, 85, ...
...
The recurrence is the same for every row.
From Jean-François Alcover, Nov 28 2019: (Start)
It appears that, when odd, a(n) is never a multiple of 5.
Main and 3rd upper diagonals of the difference array are A001045 (Jacobsthal numbers); first upper diagonal is negated A001045; second upper diagonal is A000079 (powers of 2); 4th upper diagonal is A062092.
(End)

Crossrefs

Programs

  • Mathematica
    a[0] = a[2] = 1; a[1] = 0; a[n_] := a[n] = 2^(n - 3) - a[n - 3]; Array[a, 36, 0] (* Amiram Eldar, Nov 06 2019 *)
  • PARI
    Vec((1 - 2*x + x^2 - x^3) / ((1 + x)*(1 - 2*x)*(1 - x + x^2)) + O(x^40)) \\ Colin Barker, Oct 29 2019

Formula

a(n+1) - 2*a(n) = period 6: repeat [-2, 1, -2, 2, -1, 2].
a(n+12) - a(n) = 455*2^n.
From Colin Barker, Oct 29 2019: (Start)
G.f.: (1 - 2*x + x^2 - x^3) / ((1 + x)*(1 - 2*x)*(1 - x + x^2)).
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) for n>3.
(End)
a(n+2) - a(n) = A024495(n).
a(n+6) - a(n) = 7*2^n.
a(n+9) + a(n) = 57*2^n.
a(n) = A113405(n) + A092220(n+5).
9*a(n) = 2^n + 5*(-1)^n + 3*A010892(n). - R. J. Mathar, Nov 28 2019

A167280 Period length 12: 0,0,1,2,4,7,4,8,7,4,8,5 (and repeat).

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 4, 8, 7, 4, 8, 5, 0, 0, 1, 2, 4, 7, 4, 8, 7, 4, 8, 5, 0, 0, 1, 2, 4, 7, 4, 8, 7, 4, 8, 5, 0, 0, 1, 2, 4, 7, 4, 8, 7, 4, 8, 5, 0, 0, 1, 2, 4, 7, 4, 8, 7, 4, 8, 5, 0, 0, 1, 2, 4, 7, 4, 8, 7, 4, 8, 5, 0, 0, 1, 2, 4, 7, 4, 8, 7, 4, 8, 5, 0, 0, 1, 2, 4, 7, 4, 8, 7, 4, 8, 5, 0, 0, 1, 2, 4, 7, 4, 8, 7
Offset: 0

Views

Author

Paul Curtz, Nov 01 2009

Keywords

Comments

The sum of the terms in the period is 50, so the partial sums of the sequence are also 12-periodic if reduced modulo 50 or modulo 10.
The weighted partial sums b(n) = sum_{i=0..n} a(i)*2^i obey b(n) = b(n+12) (mod 10).
Third column is A000689. (Which table or array is this referring to? R. J. Mathar, Nov 01 2009)
The set of digits in the period is the same as in A141425.
A derived sequence with terms a(n)+a(n+6) has period length 6: 4, 8, 8, 6, 12, 12 (repeat).

Formula

a(n) = A113405(n+1) mod 10.
G.f.: x^2*(1+2*x+4*x^2+7*x^3+4*x^4+8*x^5+7*x^6+4*x^7+8*x^8+5*x^9)/( (1-x)*(1+x+x^2)*(1+x)*(1-x+x^2)*(1+x^2)*(x^4-x^2+1)) [R. J. Mathar, Nov 03 2009]

Extensions

Edited by R. J. Mathar, Nov 05 2009

A191897 Coefficients of the Z(n,x) polynomials; Z(0,x) = 1, Z(1,x) = x and Z(n,x) = x*Z(n-1,x) - 2*Z(n-2,x), n >= 2.

Original entry on oeis.org

1, 1, 0, 1, 0, -2, 1, 0, -4, 0, 1, 0, -6, 0, 4, 1, 0, -8, 0, 12, 0, 1, 0, -10, 0, 24, 0, -8, 1, 0, -12, 0, 40, 0, -32, 0, 1, 0, -14, 0, 60, 0, -80, 0, 16, 1, 0, -16, 0, 84, 0, -160, 0, 80, 0, 1, 0, -18, 0, 112, 0, -280, 0, 240, 0, -32
Offset: 0

Views

Author

Paul Curtz, Jun 19 2011

Keywords

Comments

The coefficients of the Z(n,x) polynomials by decreasing exponents, see the formulas, define this triangle.

Examples

			The first few rows of the coefficients of the Z(n,x) are
  1;
  1,    0;
  1,    0,   -2;
  1,    0,   -4,    0;
  1,    0,   -6,    0,    4;
  1,    0,   -8,    0,   12,    0;
  1,    0,  -10,    0,   24,    0,   -8;
  1,    0,  -12,    0,   40,    0,  -32,    0;
  1,    0,  -14,    0,   60,    0,  -80,    0,   16;
  1,    0,  -16,    0,   84,    0, -160,    0,   80,    0;
		

Crossrefs

Row sums: A107920(n+1). Main diagonal: A077966(n).
Z(n,x=1) = A107920(n+1), Z(n,x=2) = A009545(n+1),
Z(n,x=3) = A000225(n+1), Z(n,x=4) = A007070(n),
Z(n,x=5) = A107839(n), Z(n,x=6) = A154244(n),
Z(n,x=7) = A186446(n), Z(n,x=8) = A190975(n+1),
Z(n,x=9) = A190979(n+1), Z(n,x=10) = A190869(n+1).
Row sum without sign: A113405(n+1).

Programs

  • Maple
    nmax:=10: Z(0, x):=1 : Z(1, x):=x: for n from 2 to nmax do Z(n, x) := x*Z(n-1, x) - 2*Z(n-2, x) od: for n from 0 to nmax do for k from 0 to n do T(n, k) := coeff(Z(n, x), x, n-k) od: od: seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 27 2011, revised Nov 29 2012
  • Mathematica
    a[n_, k_] := If[OddQ[k], 0, 2^(k/2)*Coefficient[ ChebyshevU[n, x/2], x, n-k]]; Flatten[ Table[ a[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Aug 02 2012, from 2nd formula *)

Formula

Z(0,x) = 1, Z(1,x) = x and Z(n,x) = x*Z(n-1,x) - 2*Z(n-2,x), n >= 2.
a(n,k) = A077957(k) * A053119(n,k). - Paul Curtz, Sep 30 2011

Extensions

Edited and information added by Johannes W. Meijer, Jun 27 2011

A275771 a(n+3) = A008578(n+1) -a(n), a(0) = a(1) = a(2) = 0.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 5, 8, 9, 12, 11, 14, 17, 20, 23, 24, 23, 24, 29, 36, 37, 38, 35, 36, 41, 48, 53, 56, 53, 50, 51, 56, 63, 76, 75, 74, 63, 74, 77, 94, 89, 90, 79, 90, 91, 112, 103, 106, 87, 108, 117, 140
Offset: 0

Views

Author

Paul Curtz, Aug 08 2016

Keywords

Comments

A008578 gives the noncomposite numbers, the prime numbers at the beginning of the 20th century which included 1.
a(2n) = 0, 0, 2, 4, 8, 12, 14, 20, 24, 24, ... always even?
a(2n+3) = 1, 3, 5, 9, 11, 17, 23, 23, 29, ... always odd?
First differences: 0, 0, 1, 1, 1, 1, 1, 3, 1, 3, -1, 3, 3, 3, 3, 1, -1, 1, 5, 7, ... .

Examples

			a(3) = 1-0 = 1, a(4) = 2-0 = 2, a(5) = 3-0 = 3, a(6) = 5-1 = 4, a(6) = 7-2 = 5, ... .
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n + 3] == If[n == 0, 1, Prime[n]] - a[n], a[0] == 0, a[1] == 0, a[2] == 0}, a, {n, 0, 52}] (* Michael De Vlieger, Aug 08 2016 *)
Previous Showing 21-25 of 25 results.