cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A356110 Numbers k such that k^2 + {1,3,7,13,31} are prime.

Original entry on oeis.org

4, 10, 14290, 43054, 109456, 315410, 352600, 483494, 566296, 685114, 927070, 1106116, 1248796, 1501174, 1997986, 2399204, 2501404, 2553100, 2726840, 2874680, 3291760, 4129394, 4473766, 4794520, 4901144, 6350306, 7444070, 7753456, 7892504, 8009536, 8069540
Offset: 1

Views

Author

Michel Lagneau, Jul 27 2022

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			4^2 + {1,3,7,13,31} = {17,19,23,29,47} are all prime.
		

Crossrefs

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13,31]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 27 2022
  • Mathematica
    Select[Range[10^6], AllTrue[#^2 + {1,3,7,13,31}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,31})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022

A356175 Numbers k such that k^2 + {1,3,7,13,163} are prime.

Original entry on oeis.org

2, 4, 10, 14290, 64390, 74554, 83464, 93460, 132304, 238850, 262630, 277630, 300206, 352600, 376190, 404954, 415180, 610340, 806180, 984686, 1025650, 1047050, 1106116, 1382860, 2014624, 2440714, 2525870, 2538344, 2760026, 2826380, 3145600, 3508586, 3715156
Offset: 1

Views

Author

Jean-Marc Rebert, Jul 28 2022

Keywords

Comments

For 14 <= m <= 999 and k <= A356110(31) = 8069560, the number of sets of primes of the form k^2 + {1,3,7,13,m} is the greatest for m = 163. There are 51 such terms. See b-file.
All terms are 2 or 4 modulo 6.

Examples

			2 is a term since 2^2 + {1,3,7,13,163} = {5,7,11,17,167} are all primes.
		

Crossrefs

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1, 3, 7, 13, 163]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 28 2022
  • Mathematica
    Select[Range[4*10^6], AllTrue[#^2 + {1, 3, 7, 13, 163}, PrimeQ] &] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    is(k)=my(v=[1,3,7,13,163],ok=1);for(i=1,#v,if(!isprime(k^2+v[i]),ok=0;break));ok
    
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,163})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 28 2022

A178639 Numbers m such that all three values m^2 + 13^k, k = 1, 2, 3, are prime.

Original entry on oeis.org

10, 12, 200, 268, 340, 418, 488, 530, 838, 840, 1102, 1720, 1830, 2240, 2410, 2768, 3148, 3202, 3318, 3322, 3958, 4162, 4610, 5080, 5672, 5700, 5722, 5870, 6178, 6302, 6480, 7490, 8130, 8262, 8888, 9132, 9602, 9618, 10638
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 31 2010

Keywords

Comments

Subsequence of A176969.
The least-significant digit of all terms is one of 0, 2 or 8, because for odd digits m^2 + 13^k would be even (not prime), and for digits 4 and 6 the number m^2 + 13^2 is a multiple of 5.

Examples

			m=10 is in the sequence because 10^2 + 13 = 113 = prime(30), 10^2 + 13^2 = 269 = prime(57), 10^2 + 13^3 = 2297 = prime(342).
m=8888 is in the sequence because 8888^2 + 13 = 78996557 = prime(4614261), 8888^2 + 13^2 = 78996713 = prime(4614269), 8888^2 + 13^3 = 78998741 = prime(4614379).
m=6480 yields a prime 6480^2 + 13^k even for k=0.
m=7490 yields a prime 7490^2 + 13^k even for k=0 and k=4.
		

References

  • B. Bunch: The Kingdom of Infinite Number: A Field Guide, W. H. Freeman, 2001.
  • R. Courant, H. Robbins: What Is Mathematics? An Elementary Approach to Ideas and Methods, Oxford University Press, 1996.
  • G. H. Hardy, E. M. Wright, E. M., An Introduction to the Theory of Numbers (5th edition), Oxford University Press, 1980.

Crossrefs

Extensions

keyword:base removed by R. J. Mathar, Jul 13 2010
Previous Showing 11-13 of 13 results.