cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A332367 Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = number of triangular cells in the partition for m >= n >= 2.

Original entry on oeis.org

4, 8, 20, 12, 32, 52, 16, 48, 80, 124, 20, 64, 108, 168, 228, 24, 84, 144, 228, 312, 428, 28, 104, 180, 288, 396, 544, 692, 32, 128, 224, 360, 496, 684, 872, 1100, 36, 152, 268, 432, 596, 824, 1052, 1328, 1604, 40, 180, 320, 520, 720, 1000, 1280, 1620, 1960, 2396
Offset: 2

Views

Author

N. J. A. Sloane, Feb 12 2020

Keywords

Examples

			Triangle begins:
4,
8, 20,
12, 32, 52,
16, 48, 80, 124,
20, 64, 108, 168, 228,
24, 84, 144, 228, 312, 428,
28, 104, 180, 288, 396, 544, 692,
32, 128, 224, 360, 496, 684, 872, 1100,
36, 152, 268, 432, 596, 824, 1052, 1328, 1604,
...
		

Crossrefs

For main diagonal see A332368.

Programs

  • Maple
    # Maple code for sequences mentioned in Theorem 12 of Alekseyev et al. (2015).
    VR := proc(m,n,q) local a,i,j; a:=0;
    for i from -m+1 to m-1 do for j from -n+1 to n-1 do
    if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
    VS := proc(m,n) local a,i,j; a:=0; # A331781
    for i from 1 to m-1 do for j from 1 to n-1 do
    if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
    c3 := (m,n) -> VR(m,n,2)+4; # A332367
    for m from 2 to 12 do lprint([seq(c3(m,n),n=2..m)]); od:
    [seq(c3(n,n)/4,n=2..40)]; # A332368
    c4 := (m,n) -> VR(m,n,1)/2 - VR(m,n,2) - 3; # A332369
    for m from 2 to 12 do lprint([seq(c4(m,n),n=2..m)]); od:
    [seq(c4(n,n),n=2..40)]; # A332370
    ct := (m,n) -> c3(m,n)+c4(m,n); # A332371
    for m from 2 to 12 do lprint([seq(ct(m,n),n=2..m)]); od:
    [seq(ct(n,n),n=2..40)]; # A114043
    et := (m,n) -> VR(m,n,1) - VR(m,n,2)/2 - VS(m,n) - 2; # A332372
    for m from 2 to 12 do lprint([seq(et(m,n),n=2..m)]); od:
    [seq(et(n,n),n=2..40)]; # A332373
    vt := (m,n) ->  et(m,n) - ct(m,n) +1; # A332374
    for m from 2 to 12 do lprint([seq(vt(m,n),n=2..m)]); od:
    [seq(vt(n,n),n=2..40)]; # A332375

A332371 Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = total number of cells in the partition for m >= n >= 2.

Original entry on oeis.org

7, 14, 29, 23, 50, 87, 34, 75, 132, 201, 47, 106, 189, 290, 419, 62, 141, 252, 387, 560, 749, 79, 182, 327, 504, 731, 980, 1283, 98, 227, 410, 633, 920, 1235, 1618, 2041, 119, 278, 503, 778, 1133, 1522, 1995, 2518, 3107, 142, 333, 604, 935, 1362, 1829, 2398, 3027, 3736, 4493
Offset: 2

Views

Author

N. J. A. Sloane, Feb 12 2020

Keywords

Comments

Equals sum of triangles A332367 and A332369.

Examples

			Triangle begins:
7,
14, 29,
23, 50, 87,
34, 75, 132, 201,
47, 106, 189, 290, 419,
62, 141, 252, 387, 560, 749,
79, 182, 327, 504, 731, 980, 1283,
98, 227, 410, 633, 920, 1235, 1618, 2041,
119, 278, 503, 778, 1133, 1522, 1995, 2518, 3107,
...
		

Crossrefs

For main diagonal see A114043.

Programs

A115009 Array read by antidiagonals: let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j), then T(m,n) = 2*m*n+m+n+2*V(m,n), for m >= 0, n >= 0.

Original entry on oeis.org

0, 1, 1, 2, 6, 2, 3, 13, 13, 3, 4, 22, 28, 22, 4, 5, 33, 49, 49, 33, 5, 6, 46, 74, 86, 74, 46, 6, 7, 61, 105, 131, 131, 105, 61, 7, 8, 78, 140, 188, 200, 188, 140, 78, 8, 9, 97, 181, 251, 289, 289, 251, 181, 97, 9, 10, 118, 226, 326, 386, 418, 386, 326, 226, 118, 10, 11, 141, 277
Offset: 0

Views

Author

N. J. A. Sloane, Feb 24 2006

Keywords

Comments

This is the number of linear partitions of an m X n grid.

Examples

			The array begins:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
1, 6, 13, 22, 33, 46, 61, 78, 97, 118, ...
2, 13, 28, 49, 74, 105, 140, 181, 226, 277, ...
3, 22, 49, 86, 131, 188, 251, 326, 409, 502, ...
4, 33, 74, 131, 200, 289, 386, 503, 632, 777, ...
5, 46, 105, 188, 289, 418, 559, 730, 919, 1132, ...
6, 61, 140, 251, 386, 559, 748, 979, 1234, 1521, ...
7, 78, 181, 326, 503, 730, 979, 1282, 1617, 1994, ...
...
		

References

  • D. M. Acketa, J. D. Zunic: On the number of linear partitions of the (m,n)-grid. Inform. Process. Lett., 38 (3) (1991), 163-168. See Table A.1.
  • Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Equation (1.2).

Crossrefs

The second and third rows are A028872 and A358296.
The main diagonal is A141255 = A114043 - 1.
The lower triangle is A332351.

Programs

  • Maple
    V:=proc(m,n) local t1,i,j; t1:=0; for i from 1 to m do for j from 1 to n do if gcd(i,j)=1 then t1:=t1+(m+1-i)*(n+1-j); fi; od; od; t1; end; T:=(m,n)->(2*m*n+m+n+2*V(m,n));
  • Mathematica
    V[m_, n_] := Sum[If[GCD[i, j] == 1, (m-i+1)*(n-j+1), 0], {i, 1, m}, {j, 1, n}]; T[m_, n_] := 2*m*n+m+n+2*V[m, n]; Table[T[m-n, n], {m, 0, 11}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)

A177719 Number of line segments connecting exactly 3 points in an n X n grid of points.

Original entry on oeis.org

0, 0, 8, 24, 60, 112, 212, 344, 548, 800, 1196, 1672, 2284, 2992, 3988, 5128, 6556, 8160, 10180, 12424, 15068, 17968, 21604, 25576, 30092, 34976, 40900, 47288, 54500, 62224, 70972, 80296, 90740, 101824, 114700, 128344, 143212, 158896, 176836
Offset: 1

Views

Author

Seppo Mustonen, May 13 2010

Keywords

Comments

a(n) is also the number of pairs of points visible to each other exactly through one point in an n X n grid of points.
Mathematica code below computes with j=1 also A114043(n)-1 and A141255(n) much more efficiently than codes/formulas currently presented for those sequences.

Programs

  • Mathematica
    j=2;
    a[n_]:=a[n]=If[n<=j,0,2*a1[n]-a[n-1]+R1[n]]
    a1[n_]:=a1[n]=If[n<=j,0,2*a[n-1]-a1[n-1]+R2[n]]
    R1[n_]:=R1[n]=If[n<=j,0,R1[n-1]+4*S[n]]
    R2[n_]:=(n-1)*S[n]
    S[n_]:=If[Mod[n-1,j]==0,EulerPhi[(n-1)/j],0]
    Table[a[n],{n,1,50}]
  • PARI
    { A177719(n) = if(n<2, return(0)); 2*(n*(n-2) + sum(i=1,n-1,sum(j=1,n-1, (gcd(i,j)==2)*(n-i)*(n-j))) ); } \\ Max Alekseyev, Jul 08 2019
    
  • Python
    from sympy import totient
    def A177719(n): return 4*((n-1)*(n-2) + sum(totient(i)*(n-2*i)*(n-i) for i in range(2,n//2+1))) # Chai Wah Wu, Aug 18 2021

Formula

a(n) = Sum_{-n < i,j < n; gcd(i,j)=2} (n-|i|)*(n-|j|)/2. For n>1, a(n) = 2 * ( n*(n-2) + Sum_{i,j=1..n-1; gcd(i,j)=2} (n-i)*(n-j) ). - Max Alekseyev, Jul 08 2019
a(n) = 4*((n-1)*(n-2) + Sum_{i=2..floor(n/2)} (n-2*i)*(n-i)*phi(i)). - Chai Wah Wu, Aug 18 2021

A331771 a(n) = Sum_{-n

Original entry on oeis.org

0, 12, 56, 172, 400, 836, 1496, 2564, 4080, 6212, 8984, 12788, 17488, 23644, 31112, 40148, 50912, 64172, 79448, 97868, 118912, 143108, 170504, 202500, 238080, 278700, 323864, 374508, 430272, 493380, 561832, 638692, 722656, 814604, 914360, 1023428
Offset: 1

Views

Author

N. J. A. Sloane, Feb 08 2020

Keywords

Comments

a(n) = 8*A332612(n)+4*n*(n-1)+4*(n-1)^2. Also adding 2 to the terms of the present sequence gives (essentially) A114146. - N. J. A. Sloane, Mar 14 2020

References

  • Koplowitz, Jack, Michael Lindenbaum, and A. Bruckstein. "The number of digital straight lines on an N* N grid." IEEE Transactions on Information Theory 36.1 (1990): 192-197. (See I(n).)

Crossrefs

When divided by 4 this becomes A115005, so this is a ninth sequence to add to the following list.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n.
Cf. A332612.

Programs

  • Maple
    VR := proc(m,n,q) local a,i,j; a:=0;
    for i from -m+1 to m-1 do for j from -n+1 to n-1 do
    if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
    [seq(VR(n,n,1),n=1..50)];
  • Mathematica
    a[n_] := Sum[Boole[GCD[i, j] == 1] (n - Abs[i]) (n - Abs[j]), {i, -n + 1, n - 1}, {j, -n + 1, n - 1}];
    Array[a, 36] (* Jean-François Alcover, Apr 19 2020 *)
  • Python
    from sympy import totient
    def A331771(n): return 4*((n-1)*(2*n-1)+sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n))) # Chai Wah Wu, Aug 17 2021

Formula

a(n) = 4 * A115005(n).
a(n) = 4*((n-1)*(2n-1)+Sum_{i=2..n-1} (n-i)*(2*n-i)*phi(i)). - Chai Wah Wu, Aug 17 2021

A332351 Triangle read by rows: T(m,n) = Sum_{-m= n >= 1.

Original entry on oeis.org

0, 1, 6, 2, 13, 28, 3, 22, 49, 86, 4, 33, 74, 131, 200, 5, 46, 105, 188, 289, 418, 6, 61, 140, 251, 386, 559, 748, 7, 78, 181, 326, 503, 730, 979, 1282, 8, 97, 226, 409, 632, 919, 1234, 1617, 2040, 9, 118, 277, 502, 777, 1132, 1521, 1994, 2517, 3106, 10, 141, 332, 603, 934, 1361, 1828, 2397, 3026, 3735, 4492
Offset: 1

Views

Author

N. J. A. Sloane, Feb 10 2020

Keywords

Comments

This is the triangle in A332350, halved.
This triangle is the lower half of the array defined in A115009.

Examples

			Triangle begins:
0,
1, 6,
2, 13, 28,
3, 22, 49, 86,
4, 33, 74, 131, 200,
5, 46, 105, 188, 289, 418,
6, 61, 140, 251, 386, 559, 748,
7, 78, 181, 326, 503, 730, 979, 1282,
8, 97, 226, 409, 632, 919, 1234, 1617, 2040,
9, 118, 277, 502, 777, 1132, 1521, 1994, 2517, 3106,
...
		

References

  • Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Equation (1.2).

Crossrefs

The main diagonal is A141255, or A114043 - 1.
This is the lower triangle of the array in A115009.

Programs

  • Maple
    VR := proc(m,n,q) local a,i,j; a:=0;
    for i from -m+1 to m-1 do for j from -n+1 to n-1 do
    if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
    for m from 1 to 12 do lprint(seq(VR(m,n,1)/2,n=1..m),); od:
  • Mathematica
    A332351[m_,n_]:=Sum[If[CoprimeQ[i,j],2(m-i)(n-j),0],{i,m-1},{j,n-1}]+2m*n-m-n;Table[A332351[m,n],{m,15},{n,m}] (* Paolo Xausa, Oct 18 2023 *)

A114531 Number of intersections of a convex set with the n X n grid.

Original entry on oeis.org

1, 2, 16, 214, 2856, 33367, 349895, 3302046, 28597720, 229893484, 1730841042, 12296287989, 82945782429, 533994100001, 3295058878301, 19560004053448, 112049953456910, 621112646095769, 3339451666010949, 17451533356424837, 88807504851447189, 440798078343276894
Offset: 0

Views

Author

David Applegate, Feb 24 2006

Keywords

Comments

This is a generalization of A114043, which can be viewed as the number of intersections of a halfspace with the n X n grid (divided by 2).

Examples

			a(3) = 214 (X's indicate points in intersection):
... X.. .X. ... XX. X.. X.. X.. XXX XX. XX. XX. X.. X.. .X. .X.
... ... ... .X. ... .X. ..X ... ... X.. .X. ..X .XX .X. .X. XX.
... ... ... ... ... ... ... .X. ... ... ... ... ... ..X .X. ...
-1- -4- -4- -1- -8- -4- -8- -8- -4- -4- -8- -8- -8- -2- -2- -4-
XXX XXX XX. XX. XX. XX. .X. X.. XXX XXX XX. XX. XX. XX. .X. XX.
X.. .X. XX. .X. .XX .X. XXX .XX XX. .X. .XX .XX XXX XX. XXX .X.
... ... ... .X. ... ..X ... .X. ... .X. ..X .X. ... ..X .X. .XX
-8- -4- -4- -8- -8- -8- -4- -4- -8- -4- -4- -8- -8- -4- -1- -4-
XXX XXX XXX XX. XX. XXX XXX XX. XXX XXX
XXX XX. XX. XXX XXX XXX XXX XXX XXX XXX
... X.. .X. .X. ..X X.. .X. .XX XX. XXX
-4- -4- -8- -4- -8- -8- -4- -2- -4- -1-
		

Crossrefs

Cf. A114043.

Extensions

More terms from Peter J. Taylor, Feb 28 2019

A332612 a(n) = Sum_{ i=2..n-1, j=1..i-1, gcd(i,j)=1 } (n-i)*(n-j).

Original entry on oeis.org

0, 0, 2, 11, 32, 77, 148, 268, 442, 691, 1018, 1472, 2036, 2780, 3686, 4786, 6100, 7724, 9598, 11863, 14454, 17437, 20818, 24772, 29172, 34200, 39794, 46071, 52986, 60817, 69314, 78860, 89292, 100720, 113122, 126686, 141244, 157294, 174566, 193228, 213172, 234954, 258058, 283189, 309946, 338473, 368782, 401516, 436040
Offset: 1

Views

Author

Keywords

Comments

Related to the number of linear dichotomies on a square grid.
A331771(n) = 8*a(n) + 4*n*(n-1) + 4*(n-1)^2.

Crossrefs

The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. The present sequence and A331771 could be added to this list.

Programs

  • Maple
    I1 := proc(n) local a, i, j; a:=0;
    for i from 2 to n-1 do for j from 1 to i-1 do
    if igcd(i,j)=1 then a := a+(n-i)*(n-j); fi; od; od; a; end;
    [seq(I1(n),n=1..40)];
  • PARI
    a(n) = sum(i=2, n-1, sum(j=1, i-1, if (gcd(i,j)==1, (n-i)*(n-j)))); \\ Michel Marcus, Mar 14 2020
    
  • Python
    from sympy import totient
    def A332612(n): return sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n))//2 # Chai Wah Wu, Aug 17 2021

Formula

a(n) = (Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i))/2. - Chai Wah Wu, Aug 17 2021

A355902 Start with a 2 X n array of squares, join every vertex on top edge to every vertex on bottom edge; a(n) = one-half the number of cells.

Original entry on oeis.org

0, 3, 10, 26, 56, 112, 196, 331, 522, 790, 1138, 1615, 2204, 2975, 3910, 5041, 6388, 8047, 9958, 12262, 14894, 17920, 21346, 25347, 29796, 34875, 40522, 46854, 53826, 61716, 70274, 79883, 90380, 101875, 114346, 127981, 142612, 158737, 176086, 194827, 214852, 236717, 259906, 285124, 311970, 340588, 370990, 403819, 438440, 475556
Offset: 0

Views

Author

Keywords

Comments

Note that this figure can be obtained by drawing an "equatorial" line through the middle of the strip of n adjacent rectangles in A306302. This cuts each of the 2n "equatorial" cells in A306302 in two. It follows that 2*a(n) = A306302(n) + 2*n, i.e. that a(n) = A306302(n)/2 + n. Note that there is an explicit formula for A306302(n) in terms of n. - Scott R. Shannon, Sep 06 2022.
This means the present sequence is one more member of the large class of sequences which are essentially the same as A115004 (see Cross-References). - N. J. A. Sloane, Sep 06 2022

Crossrefs

The following nine sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n; A355902(n) = n + A306302(n)/2. - N. J. A. Sloane, Sep 06 2022

Formula

a(n) = A356790(2,n+2)/2 - 2.

A115010 Array read by antidiagonals: let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j), then T(m,n) = 2*m*n+m+n+2*V(m,n), for m >= 1, n >= 1.

Original entry on oeis.org

6, 13, 13, 22, 28, 22, 33, 49, 49, 33, 46, 74, 86, 74, 46, 61, 105, 131, 131, 105, 61, 78, 140, 188, 200, 188, 140, 78, 97, 181, 251, 289, 289, 251, 181, 97, 118, 226, 326, 386, 418, 386, 326, 226, 118, 141, 277, 409, 503, 559, 559, 503, 409, 277, 141, 166, 332, 502, 632, 730
Offset: 1

Views

Author

N. J. A. Sloane, Feb 24 2006

Keywords

Crossrefs

Programs

  • Maple
    V:=proc(m,n) local t1,i,j; t1:=0; for i from 1 to m do for j from 1 to n do if gcd(i,j)=1 then t1:=t1+(m+1-i)*(n+1-j); fi; od; od; t1; end; T:=(m,n)->(2*m*n+m+n+2*V(m,n));
  • Mathematica
    V[m_, n_] := Sum[Boole[CoprimeQ[i, j]]*(m-i+1)*(n-j+1), {i, m}, {j, n}];
    T[m_, n_] := 2*m*n + m + n + 2*V[m, n];
    Table[T[m - n + 1, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Nov 28 2017 *)
Previous Showing 11-20 of 22 results. Next