cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A241849 a(n) = n^2 + 19.

Original entry on oeis.org

19, 20, 23, 28, 35, 44, 55, 68, 83, 100, 119, 140, 163, 188, 215, 244, 275, 308, 343, 380, 419, 460, 503, 548, 595, 644, 695, 748, 803, 860, 919, 980, 1043, 1108, 1175, 1244, 1315, 1388, 1463, 1540, 1619, 1700, 1783, 1868, 1955, 2044, 2135, 2228, 2323, 2420, 2519
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Crossrefs

Cf. similar sequences listed in A114962.

Programs

Formula

G.f.: (19 - 37*x + 20*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 03 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(19)*Pi*coth(sqrt(19)*Pi))/38.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(19)*Pi*cosech(sqrt(19)*Pi))/38. (End)
E.g.f.: exp(x)*(19 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A241889 a(n) = n^2 + 23.

Original entry on oeis.org

23, 24, 27, 32, 39, 48, 59, 72, 87, 104, 123, 144, 167, 192, 219, 248, 279, 312, 347, 384, 423, 464, 507, 552, 599, 648, 699, 752, 807, 864, 923, 984, 1047, 1112, 1179, 1248, 1319, 1392, 1467, 1544, 1623, 1704, 1787, 1872, 1959, 2048, 2139, 2232, 2327, 2424, 2523
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Crossrefs

Cf. similar sequences listed in A114962.

Programs

  • Magma
    [n^2+23: n in [0..60]];
    
  • Mathematica
    CoefficientList[Series[(23 - 45 x + 24 x^2)/(1 - x)^3,{x, 0, 60}], x]
    Range[0, 50]^2 + 23 (* or *) LinearRecurrence[{3, -3, 1}, {23, 24, 27}, 50] (* Harvey P. Dale, May 27 2014 *)
  • PARI
    a(n)=n^2+23 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (23 - 45*x + 24*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(23)*Pi*coth(sqrt(23)*Pi))/46.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(23)*Pi*cosech(sqrt(23)*Pi))/46. (End)
E.g.f.: exp(x)*(23 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A241890 a(n) = n^2 + 24.

Original entry on oeis.org

24, 25, 28, 33, 40, 49, 60, 73, 88, 105, 124, 145, 168, 193, 220, 249, 280, 313, 348, 385, 424, 465, 508, 553, 600, 649, 700, 753, 808, 865, 924, 985, 1048, 1113, 1180, 1249, 1320, 1393, 1468, 1545, 1624, 1705, 1788, 1873, 1960, 2049, 2140, 2233, 2328, 2425, 2524
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Crossrefs

Cf. similar sequences listed in A114962.

Programs

  • Magma
    [n^2+24: n in [0..60]];
    
  • Mathematica
    Table[n^2 + 24, {n, 0, 60}]
    LinearRecurrence[{3,-3,1},{24,25,28},60] (* Harvey P. Dale, Jun 24 2025 *)
  • PARI
    a(n)=n^2+24 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (24 - 47*x + 25*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(24)*Pi*coth(sqrt(24)*Pi))/48.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(24)*Pi*cosech(sqrt(24)*Pi))/48. (End)
E.g.f.: exp(x)*(24 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A114965 a(n) = n^2 + 34.

Original entry on oeis.org

34, 35, 38, 43, 50, 59, 70, 83, 98, 115, 134, 155, 178, 203, 230, 259, 290, 323, 358, 395, 434, 475, 518, 563, 610, 659, 710, 763, 818, 875, 934, 995, 1058, 1123, 1190, 1259, 1330, 1403, 1478, 1555, 1634, 1715, 1798, 1883, 1970, 2059, 2150, 2243, 2338, 2435
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Conjecture: n^2 + 34 != x^k for all n,x and k > 1.
The conjecture is true: See Cohn. - James Rayman, Feb 14 2023

Crossrefs

Programs

  • Mathematica
    34+Range[50]^2  (* Harvey P. Dale, Jan 28 2011 *)
  • PARI
    a(n)=n^2+34

Formula

From Elmo R. Oliveira, Jan 25 2025: (Start)
G.f.: (34 - 67*x + 35*x^2)/(1 - x)^3.
E.g.f.: (34 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Edited by Charles R Greathouse IV, Aug 09 2010
a(0) = 34 prepended by Elmo R. Oliveira, Jan 26 2025

A214871 Natural numbers placed in table T(n,k) layer by layer. The order of placement - T(n,n), T(1,n), T(n,1), T(2,n), T(n,2),...T(n-1,n), T(n,n-1). Table T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 3, 4, 6, 2, 7, 11, 8, 9, 12, 18, 13, 5, 14, 19, 27, 20, 15, 16, 21, 28, 38, 29, 22, 10, 23, 30, 39, 51, 40, 31, 24, 25, 32, 41, 52, 66, 53, 42, 33, 17, 34, 43, 54, 67, 83, 68, 55, 44, 35, 36, 45, 56, 69, 84, 102, 85, 70, 57, 46, 26, 47, 58, 71, 86, 103, 123
Offset: 1

Views

Author

Boris Putievskiy, Mar 11 2013

Keywords

Comments

a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1).
Enumeration table T(n,k) layer by layer. The order of the list:
T(1,1)=1;
T(2,2), T(1,2), T(2,1);
. . .
T(n,n), T(1,n), T(n,1), T(2,n), T(n,2),...T(n-1,n), T(n,n-1);
. . .

Examples

			The start of the sequence as table:
  1....3...6..11..18..27...
  4....2...8..13..20..29...
  7....9...5..15..22..31...
  12..14..16..10..24..33...
  19..21..23..25..17..35...
  28..30..32..34..36..26...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  3,4;
  6,2,7;
  11,8,9,12;
  18,13,5,14,19;
  27,20,15,16,21,28;
  . . .
		

Crossrefs

Cf. A060734, A060736, A185725, A213921, A213922; table T(n,k) contains: in rows A059100, A087475, A114949, A189833, A114948, A114962; in columns A117950, A117951, A117619, A189834, A189836; the main diagonal is A002522.

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i == j:
       result=(i-1)**2+1
    if i > j:
       result=(i-1)**2+2*j+1
    if i < j:
       result=(j-1)**2+2*i

Formula

As table
T(n,k) = (n-1)^2+1, if n=k;
T(n,k) = (n-1)^2+2*k+1, if n>k;
T(n,k) = (k-1)^2+2*n, if n
As linear sequence
a(n) = (i-1)^2+1, if i=j;
a(n) = (i-1)^2+2*j+1, if i>j;
a(n) = (j-1)^2+2*i, if i>j; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
Previous Showing 11-15 of 15 results.