cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A335667 a(n) is the smallest even number k such that k-1 and k+1 are both n-almost primes.

Original entry on oeis.org

4, 34, 274, 2276, 8126, 184876, 446876, 18671876, 95234374, 1144976876, 6018359374, 281025390626, 2068291015624, 6254345703124, 181171630859374, 337813720703126, 31079046044921876, 205337027587890626
Offset: 1

Views

Author

Zak Seidov and Amiram Eldar, Jun 17 2020

Keywords

Comments

10^13 < a(15) <= 181171630859374. - Giovanni Resta, Jun 21 2020

Examples

			a(1) = 4 since 4 - 1 and 4 + 1 are both primes.
a(2) = 34 since 34 - 1 = 33 = 3*11 and 34 + 1 = 35 = 5*7 are both semiprimes.
a(3) = 274 since 274 - 1 = 273 = 3*7*13 and 274 + 1 = 275 = 5^2 * 11 are both 3-almost primes.
		

Crossrefs

Programs

  • Mathematica
    m = 8; v = Table[0, {m}]; c = 0; o1 = 1; n = 4; While[c < m, o2 = PrimeOmega[n + 1]; If[o1 == o2 && v[[o1]] == 0, c++; v[[o1]] = n]; o1 = o2; n += 2]; v
  • PARI
    generate(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, if(bigomega(m*q+2) == k, listput(list, m*q+1))), forprime(q=p, sqrtnint(B\m, n), list=concat(list, f(m*q, q, n-1)))); list); vecsort(Vec(f(1, 3, n)));
    a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Jul 10 2023

Extensions

a(12)-a(14) from Giovanni Resta, Jun 21 2020
a(15)-a(18) from Daniel Suteu, Jul 10 2023

A356953 Least nonzero starting number in the first run of exactly n consecutive numbers having the same number of prime factors counted with multiplicity, or -1 if no such number exists.

Original entry on oeis.org

1, 2, 33, 1083, 602, 2522, 211673, 6612470, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465, 361385490681003, 441826936079342
Offset: 1

Views

Author

Jean-Marc Rebert, Sep 06 2022

Keywords

Comments

In the definition, "exactly" means the run is not part of a longer run.
a(18) > 2 * 10^15. - Toshitaka Suzuki, Aug 31 2025

Examples

			2 and 3 are 2 consecutive numbers and have the same number of prime factors, and 2 is the smallest such number, hence a(2) = 2.
		

Crossrefs

Programs

  • PARI
    card(m)=my(c=0,k=bigomega(m));if(bigomega(m-1)!=k,while(bigomega(m)==k,c++;m++));c
    a(n)=if(n==1,return(1));for(m=2,+oo,if(card(m)==n,return(m)))

Extensions

a(16)-a(17) from Toshitaka Suzuki, Aug 31 2025

A358818 a(n) is the least number k such that A046660(k) = A046660(k+1) = n.

Original entry on oeis.org

1, 44, 135, 80, 8991, 29888, 123200, 2316032, 1043199, 24151040, 217713663, 689278976, 11573190656, 76876660736, 311969153024, 2035980763136, 2741258240000, 215189482110975
Offset: 0

Views

Author

Amiram Eldar, Dec 02 2022

Keywords

Comments

a(14) <= 314944159743.
a(18) > 10^14.5; a(19) = 275892612890624; a(20) > 10^14.5. - Martin Ehrenstein, Dec 11 2022

Crossrefs

Cf. A046660.
Subsequence of A358817.
Similar sequences: A052215, A059737, A093548, A115186.

Programs

  • Mathematica
    e[n_] := PrimeOmega[n] - PrimeNu[n]; a[n_] := Module[{k = 1}, While[e[k] != n || e[k + 1] != n, k++]; k]; Array[a, 10, 0]
  • PARI
    e(n) = {my(f = factor(n)); bigomega(f) - omega(f)};
    a(n) = {my(k=1); while(e(k) != n || e(k+1) !=n , k++); k};

Extensions

a(14)-a(16) from Martin Ehrenstein, Dec 04 2022
a(17) from Martin Ehrenstein, Dec 09 2022

A369898 Numbers k such that k and k + 1 each have 9 prime divisors, counted with multiplicity.

Original entry on oeis.org

203391, 698624, 1245375, 1942784, 2176064, 2282175, 2536191, 2858624, 2953664, 3282687, 3560192, 3655935, 3914000, 4068224, 4135616, 4205600, 4244967, 4586624, 4695488, 4744575, 4991679, 5055615, 5450624, 5475519, 5519744, 6141824, 6246800, 6410096, 6655040, 6660224, 6753375, 6816879, 6862400
Offset: 1

Views

Author

Robert Israel, Feb 04 2024

Keywords

Comments

Numbers k such that k and k + 1 are in A046312.
If a and b are coprime terms of A046310, one of them even, then Dickson's conjecture implies there are infinitely many terms k where k/a and (k+1)/b are primes.

Examples

			a(3) = 1245375 is a term because 1245375 = 3^5 * 5^3 * 41 and 1245376 = 2^6 * 11 * 29 * 61 each have 9 prime factors, counted with multiplicity.
		

Crossrefs

Programs

  • Maple
    with(priqueue):
    R:= NULL:  count:= 0:
    initialize(Q); r:= 0:
    insert([-2^9, [2$9]], Q);
    while count < 40 do
      T:= extract(Q);
      if -T[1] = r + 1 then
        R:= R, r; count:= count+1;
      fi;
      r:= -T[1];
      p:= T[2][-1];
      q:= nextprime(p);
      for i from 9 to 1 by -1 while T[2][i] = p do
        insert([-r*(q/p)^(10-i), [op(T[2][1..i-1]), q$(10-i)]], Q);
      od
    od:
    R;

A349261 a(n) is the least number k such that A349258(k) = A349258(k+1) = n.

Original entry on oeis.org

2, 14, 125, 135, 2079, 21735, 2730375, 916352, 5955200, 4122495, 444741759, 7391633535, 98228219264
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2021

Keywords

Examples

			2 is a term since A349258(2) = A349258(3) = 1.
14 is a term since A349258(14) = A349258(15) = 2.
		

Crossrefs

Cf. A349258.
Similar sequences: A075036, A093548, A115186, A343818.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1] - 1; c[1] = 0; c[n_] := Plus @@ f @@@ FactorInteger[n]; seq[len_, nmax_] := Module[{s = Table[0, {len}], k = 0, n = 1, i}, While[n < nmax && k < len, i = c[n]; If[c[n + 1] == i && i <= len && s[[i]] == 0, k++; s[[i]] = n]; n++]; TakeWhile[s, # > 0 &]]; seq[8, 3*10^6]

A374449 Triangle read by rows: T(m,k) is the first number that starts a sequence of exactly k consecutive numbers with m prime factors, counted with multiplicity, if such a sequence is possible.

Original entry on oeis.org

5, 2, 4, 9, 33, 8, 27, 170, 1083, 602, 2522, 211673, 16, 135, 1274, 4023, 12122, 204323, 355923, 6612470, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465, 32, 944, 15470, 57967, 632148, 14845324, 69921004, 888781058, 2674685524
Offset: 1

Views

Author

Robert Israel, Jul 08 2024

Keywords

Comments

For m > 1, row m can have at most 2^m - 1 terms, because one out of every 2^m consecutive numbers is divisible by 2^m.
T(4,15) = A117969(4) = 97524222465.
a(45) > 2 * 10^15. - Toshitaka Suzuki, Aug 31 2025

Examples

			Triangle starts
  5 2
  4 9 33
  8 27 170 1083 603 3533 211673
T(3,2) = 27 because 27 = 3^3 and 28 = 2^2 * 7 each have 3 prime factors (counted with multiplicity) while 26 = 2*13 and 29 (prime) do not.
		

Crossrefs

Cf. A000079 (first column except for row 1), A115186, A113752, A117969 (last term in each row).

Programs

  • Maple
    f:= proc(n)
    uses priqueue;
    local V,L, count, T, v, j, q, p, TP;
    V:= Vector(2^n-1); count:= 0;
    L:= [(-1)$(2^n),2^n];
    initialize(pq);
    insert([-2^(n),2$n],pq);
    while count < 2^n-1 do
      T:= extract(pq); v:= -T[1];
      if L[-1] <> v-1 then
        for j from 1 while L[-1]-L[-j] = j-1 do
           if L[-j]-L[-j-1] <> 1 and V[j] = 0 then
             V[j]:= L[-j]; count:= count+1;
      fi od fi;
      L:= [op(L[2..-1]),v];
      q:= T[-1];
      p:= nextprime(q);
      for j from n+1 to 2 by -1 do
        if T[j] <> q then break fi;
        TP:= [T[1]*(p/q)^(n+2-j), op(T[2..j-1]), p$(n+2-j)];
        insert(TP,pq);
    od od;
    op(convert(V,list));
    end proc:
    f(1):= 5,2:
    seq(f(i),i=1..3);

Formula

T(m,1) = 2^m for m >= 2.

Extensions

a(26)-a(44) from Toshitaka Suzuki, Aug 31 2025

A387505 Smallest number m such that m, m+1, m+2, m+3 and m+4 have exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

602, 12122, 632148, 101905622, 15605704374, 1300091574624, 431094129471872
Offset: 3

Views

Author

Toshitaka Suzuki, Aug 31 2025

Keywords

Comments

a(10) > 2 * 10^15.

Examples

			a(4) = 12122 = 2*11*19*29, a(4)+1 = 12123 = 3^3*449, a(4)+2 = 12124 = 2^2*7*433, a(4)+3 = 12125 = 5^3*97, a(4)+4 = 12126 = 2*3*43*47 (all products of four prime factors).
		

Crossrefs

Previous Showing 11-17 of 17 results.