cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A321364 Positive integers m such that 13^m == 12 (mod m).

Original entry on oeis.org

1, 13757837, 6969969233, 514208575135
Offset: 1

Views

Author

Max Alekseyev, Nov 07 2018

Keywords

Comments

No other terms below 10^15.
Some larger terms: 14551705803598782884189, 268766423508299769671017810348321281664525668552158231.

Crossrefs

Solutions to 13^m == k (mod m): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620(k=10), A116638 (k=11), this sequence (k=12), A321365 (k=14), A116639 (k=15).

Programs

A321365 Positive integers n such that 13^n == 14 (mod n).

Original entry on oeis.org

1, 5805311, 392908759, 399614833907, 2674764845549, 21997277871211, 67146783889057
Offset: 1

Views

Author

Max Alekseyev, Nov 08 2018

Keywords

Comments

No other terms below 10^15.

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620(k=10), A116638 (k=11), A321364 (k=12), this sequence (k=14), A116639 (k=15).

Programs

A333413 Positive integers k such that k divides 13^k + 2.

Original entry on oeis.org

1, 3, 5, 185, 2199, 14061, 5672119, 6719547, 192178873, 913591893, 4589621727, 9762178659, 1157052555699
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2020

Keywords

Comments

a(14) > 6*10^12. - Giovanni Resta, Mar 29 2020

Crossrefs

Solutions to 13^k == m (mod k): this sequence (m = -2), A015963 (m = -1), A116621 (m = 1), A116622 (m = 2), A116629 (m = 3), A116630 (m = 4), A116611 (m = 5), A116631 (m = 6), A116632 (m = 7), A295532 (m = 8), A116636 (m = 9), A116620 (m = 10), A116638 (m = 11), A116639 (k = 15).
Solutions to b^k == -2 (mod k): A015973 (b = 3), A123062 (b = 5), A277370 (b = 7), this sequence (b = 13), A333414 (b = 17).

Programs

  • Mathematica
    Select[Range[100000], Divisible[PowerMod[13, #, #] + 2, #] &] (* Jinyuan Wang, Mar 28 2020 *)
  • PARI
    for(k=1, 1e6, if(Mod(13, k)^k==-2, print1(k", ")))

Extensions

a(13) from Giovanni Resta, Mar 29 2020
Previous Showing 11-13 of 13 results.