cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A340690 Numbers with a factorization whose greatest factor is 2^k, where k is the number of factors.

Original entry on oeis.org

2, 8, 12, 16, 32, 48, 64, 72, 80, 96, 112, 120, 128, 144, 160, 168, 192, 200, 224, 240, 256, 280, 288, 320, 336, 384, 392, 432, 448, 480, 512, 576, 640, 672, 704, 720, 768, 800, 832, 864, 896, 960, 1008, 1024, 1056, 1120, 1152, 1200, 1248, 1280, 1296, 1344
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Examples

			The initial terms and a valid factorization of each:
      2 = 2           168 = 3*7*8        512 = 2*2*2*2*32
      8 = 2*4         192 = 2*2*3*16     576 = 2*2*9*16
     12 = 3*4         200 = 5*5*8        640 = 2*2*10*16
     16 = 4*4         224 = 4*7*8        672 = 2*3*7*16
     32 = 2*2*8       240 = 5*6*8        704 = 2*2*11*16
     48 = 2*3*8       256 = 2*2*4*16     720 = 3*3*5*16
     64 = 2*4*8       280 = 5*7*8        768 = 2*2*2*3*32
     72 = 3*3*8       288 = 2*3*3*16     800 = 2*5*5*16
     80 = 2*5*8       320 = 2*2*5*16     832 = 2*2*13*16
     96 = 2*6*8       336 = 6*7*8        864 = 2*3*9*16
    112 = 2*7*8       384 = 2*2*6*16     896 = 2*2*14*16
    120 = 3*5*8       392 = 7*7*8        960 = 2*2*15*16
    128 = 2*2*2*16    432 = 3*3*3*16    1008 = 3*3*7*16
    144 = 3*6*8       448 = 2*2*7*16    1024 = 2*2*2*4*32
    160 = 4*5*8       480 = 2*3*5*16    1056 = 2*3*11*16
		

Crossrefs

Partitions of the prescribed type are counted by A340611.
The conjugate version is A340689.
A001055 counts factorizations, with strict case A045778.
A047993 counts balanced partitions.
A316439 counts factorizations by product and length.
A340596 counts co-balanced factorizations.
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],2^Length[#]==Max@@#&]!={}&]

A117408 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts in which the largest part occurs k times (1<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 1, 5, 1, 1, 0, 0, 0, 0, 0, 1, 6, 2, 1, 0, 0, 0, 0, 0, 0, 1, 8, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 12, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 15, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Emeric Deutsch, Mar 13 2006

Keywords

Comments

Row sums yield A000009. T(n,1)=A117409(n). Sum(k*T(n,k),k=1..n)=A092311(n).

Examples

			T(14,2)=4 because we have [7,7],[5,5,3,1],[5,5,1,1,1,1] and [3,3,1,1,1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    g:=sum(t*x^(2*k-1)/(1-t*x^(2*k-1))/product(1-x^(2*i-1),i=1..k-1),k=1..40): gser:=simplify(series(g,x=0,35)): for n from 1 to 15 do P[n]:=expand(coeff(gser,x^n)) od: for n from 1 to 15 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form

Formula

G.f.=G(t,x)=sum(tx^(2k-1)/[(1-tx^(2k-1))product(1-x^(2i-1), i=1..k-1)], k=1..infinity).

A351594 Number of odd-length integer partitions y of n that are alternately constant, meaning y_i = y_{i+1} for all odd i.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 4, 2, 7, 3, 9, 4, 13, 6, 19, 6, 26, 10, 35, 12, 49, 16, 64, 20, 87, 27, 115, 32, 151, 44, 195, 53, 256, 69, 328, 84, 421, 108, 537, 130, 682, 167, 859, 202, 1085, 252, 1354, 305, 1694, 380, 2104, 456, 2609, 564, 3218, 676, 3968, 826, 4863
Offset: 0

Views

Author

Gus Wiseman, Feb 24 2022

Keywords

Comments

These are partitions with all even run-lengths except for the last, which is odd.

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  (1)  (2)  (3)    (4)  (5)      (6)    (7)        (8)    (9)
            (111)       (221)    (222)  (331)      (332)  (333)
                        (11111)         (22111)           (441)
                                        (1111111)         (22221)
                                                          (33111)
                                                          (2211111)
                                                          (111111111)
		

Crossrefs

The ordered version (compositions) is A016116 shifted right once.
All odd-length partitions are counted by A027193.
The opposite version is A117409, even-length A351012, any length A351003.
Replacing equal with unequal relations appears to give:
- any length: A122129
- odd length: A122130
- even length: A351008
- opposite any length: A122135
- opposite odd length: A351595
- opposite even length: A122134
This is the odd-length case of A351004, even-length A035363.
The case that is also strict at even indices is:
- any length: A351005
- odd length: A351593
- even length: A035457
- opposite any length: A351006
- opposite odd length: A053251
- opposite even length: A351007
A reverse version is A096441; see also A349060.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

A340929 Heinz numbers of integer partitions of odd negative rank.

Original entry on oeis.org

4, 12, 16, 18, 27, 40, 48, 60, 64, 72, 90, 100, 108, 112, 135, 150, 160, 162, 168, 192, 225, 240, 243, 250, 252, 256, 280, 288, 352, 360, 375, 378, 392, 400, 420, 432, 448, 528, 540, 567, 588, 600, 625, 630, 640, 648, 672, 700, 768, 792, 810, 832, 880, 882
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
       4: (1,1)             150: (3,3,2,1)
      12: (2,1,1)           160: (3,1,1,1,1,1)
      16: (1,1,1,1)         162: (2,2,2,2,1)
      18: (2,2,1)           168: (4,2,1,1,1)
      27: (2,2,2)           192: (2,1,1,1,1,1,1)
      40: (3,1,1,1)         225: (3,3,2,2)
      48: (2,1,1,1,1)       240: (3,2,1,1,1,1)
      60: (3,2,1,1)         243: (2,2,2,2,2)
      64: (1,1,1,1,1,1)     250: (3,3,3,1)
      72: (2,2,1,1,1)       252: (4,2,2,1,1)
      90: (3,2,2,1)         256: (1,1,1,1,1,1,1,1)
     100: (3,3,1,1)         280: (4,3,1,1,1)
     108: (2,2,2,1,1)       288: (2,2,1,1,1,1,1)
     112: (4,1,1,1,1)       352: (5,1,1,1,1,1)
     135: (3,2,2,2)         360: (3,2,2,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A101707.
The positive version is A101707 (A340604).
The even version is A101708 (A340930).
The not necessarily odd version is A064173 (A340788).
A001222 counts prime factors.
A027193 counts partitions of odd length (A026424).
A047993 counts balanced partitions (A106529).
A058695 counts partitions of odd numbers (A300063).
A061395 selects the maximum prime index.
A063995/A105806 count partitions by Dyson rank.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324516 counts partitions with rank equal to maximum minus minimum part (A324515).
A324518 counts partitions with rank equal to greatest part (A324517).
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[2,100],OddQ[rk[#]]&&rk[#]<0&]

Formula

For all terms, A061395(a(n)) - A001222(a(n)) is odd and negative.

A340930 Heinz numbers of integer partitions of even negative rank.

Original entry on oeis.org

8, 24, 32, 36, 54, 80, 81, 96, 120, 128, 144, 180, 200, 216, 224, 270, 300, 320, 324, 336, 384, 405, 450, 480, 486, 500, 504, 512, 560, 576, 675, 704, 720, 729, 750, 756, 784, 800, 840, 864, 896, 1056, 1080, 1125, 1134, 1176, 1200, 1250, 1260, 1280, 1296, 1344
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
       8: (1,1,1)             270: (3,2,2,2,1)
      24: (2,1,1,1)           300: (3,3,2,1,1)
      32: (1,1,1,1,1)         320: (3,1,1,1,1,1,1)
      36: (2,2,1,1)           324: (2,2,2,2,1,1)
      54: (2,2,2,1)           336: (4,2,1,1,1,1)
      80: (3,1,1,1,1)         384: (2,1,1,1,1,1,1,1)
      81: (2,2,2,2)           405: (3,2,2,2,2)
      96: (2,1,1,1,1,1)       450: (3,3,2,2,1)
     120: (3,2,1,1,1)         480: (3,2,1,1,1,1,1)
     128: (1,1,1,1,1,1,1)     486: (2,2,2,2,2,1)
     144: (2,2,1,1,1,1)       500: (3,3,3,1,1)
     180: (3,2,2,1,1)         504: (4,2,2,1,1,1)
     200: (3,3,1,1,1)         512: (1,1,1,1,1,1,1,1,1)
     216: (2,2,2,1,1,1)       560: (4,3,1,1,1,1)
     224: (4,1,1,1,1,1)       576: (2,2,1,1,1,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A101708.
The positive version is (A340605).
The odd version is A101707 (A340929).
The not necessarily even version is A064173 (A340788).
A001222 counts prime factors.
A027187 counts partitions of even length.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058696 counts partitions of even numbers.
A061395 selects the maximum prime index.
A063995/A105806 count partitions by Dyson rank.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[2,100],EvenQ[rk[#]]&&rk[#]<0&]

A341448 Heinz numbers of integer partitions of type OO.

Original entry on oeis.org

6, 14, 15, 24, 26, 33, 35, 38, 51, 54, 56, 58, 60, 65, 69, 74, 77, 86, 93, 95, 96, 104, 106, 119, 122, 123, 126, 132, 135, 140, 141, 142, 143, 145, 150, 152, 158, 161, 177, 178, 185, 201, 202, 204, 209, 214, 215, 216, 217, 219, 221, 224, 226, 232, 234, 240
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2021

Keywords

Comments

These partitions are defined to have an odd number of odd parts and an odd number of even parts. They also have even length and odd sum.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      6: (2,1)         74: (12,1)           141: (15,2)
     14: (4,1)         77: (5,4)            142: (20,1)
     15: (3,2)         86: (14,1)           143: (6,5)
     24: (2,1,1,1)     93: (11,2)           145: (10,3)
     26: (6,1)         95: (8,3)            150: (3,3,2,1)
     33: (5,2)         96: (2,1,1,1,1,1)    152: (8,1,1,1)
     35: (4,3)        104: (6,1,1,1)        158: (22,1)
     38: (8,1)        106: (16,1)           161: (9,4)
     51: (7,2)        119: (7,4)            177: (17,2)
     54: (2,2,2,1)    122: (18,1)           178: (24,1)
     56: (4,1,1,1)    123: (13,2)           185: (12,3)
     58: (10,1)       126: (4,2,2,1)        201: (19,2)
     60: (3,2,1,1)    132: (5,2,1,1)        202: (26,1)
     65: (6,3)        135: (3,2,2,2)        204: (7,2,1,1)
     69: (9,2)        140: (4,3,1,1)        209: (8,5)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The case of odd parts, length, and sum is counted by A078408 (A300272).
The type EE version is A236913 (A340784).
These partitions (for odd n) are counted by A236914.
A000009 counts partitions into odd parts (A066208).
A026804 counts partitions whose least part is odd (A340932).
A027193 counts partitions of odd length/maximum (A026424/A244991).
A058695 counts partitions of odd numbers (A300063).
A160786 counts odd-length partitions of odd numbers (A340931).
A340101 counts factorizations into odd factors.
A340385 counts partitions of odd length and maximum (A340386).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[Count[primeMS[#],?EvenQ]]&&OddQ[Count[primeMS[#],?OddQ]]&]
Previous Showing 21-26 of 26 results.