cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 77 results. Next

A130882 a(n) = smallest k such that A002808(n+1) = A002808(n) + (A002808(n) mod k), or 0 if no such k exists.

Original entry on oeis.org

0, 4, 7, 2, 4, 5, 13, 2, 7, 4, 19, 2, 4, 23, 2, 5, 2, 13, 4, 31, 2, 3, 2, 17, 37, 2, 19, 4, 43, 2, 4, 47, 2, 7, 2, 5, 53, 2, 5, 2, 4, 29, 61, 2, 3, 2, 4, 67, 2, 4, 5, 73, 2, 3, 2, 4, 79, 2, 4, 83, 2, 5, 2, 43, 89, 2, 7, 2, 3, 2, 47, 97
Offset: 1

Views

Author

Rémi Eismann, Aug 21 2007 - Jan 09 2011

Keywords

Comments

a(n) is the "weight" of composite numbers.
The decomposition of composite numbers into weight * level + gap is A002808(n) = a(n) * A179621(n) + A073783(n) if a(n) > 0.

Examples

			For n = 1 we have A002808(n) = 4, A002808(n+1) = 6; there is no k such that 6 - 4 = 2 = (4 mod k), hence a(1) = 0.
For n = 3 we have A002808(n) = 8, A002808(n+1) = 9; 7 is the smallest k such that 9 - 8 = 1 = (8 mod k), hence a(3) = 7.
For n = 24 we have A002808(n) = 36, A002808(n+1) = 38; 17 is the smallest k such that 38 - 36 = 2 = (36 mod k), hence a(24) = 17.
		

Crossrefs

A130889 a(n) = smallest k such that A000959(n+1) = A000959(n) + (A000959(n) mod k), or 0 if no such k exists.

Original entry on oeis.org

0, 0, 5, 5, 11, 9, 17, 19, 29, 29, 31, 37, 47, 13, 59, 5, 5, 71, 71, 71, 9, 29, 31, 9, 107, 103, 5, 5, 131, 43, 131, 11, 5, 157, 167, 51, 5, 191, 7, 197, 199, 29, 5, 43, 227, 233, 233, 223, 257, 15, 9, 263, 281, 281, 281, 97, 13, 59, 317, 7, 17, 17, 47, 11, 353, 71, 349, 379, 389
Offset: 1

Views

Author

Rémi Eismann, Aug 21 2007 - Jan 23 2011

Keywords

Comments

a(n) is the "weight" of lucky numbers.
The decomposition of lucky numbers into weight * level + gap is A000959(n) = a(n) * A184828(n) + A031883(n) if a(n) > 0.

Examples

			For n = 1 we have A000959(n) = 1, A000959(n+1) = 3; there is no k such that 3 - 1 = 2 = (1 mod k), hence a(1) = 0.
For n = 3 we have A000959(n) = 7, A000959(n+1) = 9; 5 is the smallest k such that 9 - 7 = 2 = (7 mod k), hence a(3) = 5.
For n = 24 we have A000959(n) = 105, A000959(n+1) = 111; 9 is the smallest k such that 111 - 105 = 6 = (105 mod k), hence a(24) = 9.
		

Crossrefs

A125565 Primes p=prime(i) of level (1,12), i.e., such that A118534(i)=prime(i-12).

Original entry on oeis.org

15014557, 27001043, 29602093, 50234633, 87028433, 91814759, 94529221, 103336843, 112840309, 113774329, 113961299, 114887657, 115528969, 118974901, 129235273, 144352123, 146127721, 160370491, 163559197, 169274999, 188168059, 188895919, 191829409, 198823447
Offset: 1

Views

Author

Rémi Eismann, Jan 27 2007

Keywords

Comments

This subsequence of A125830 and of A162174 gives primes of level (1,12): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			prime(5316164) - prime(5316163) = 91814831 - 91814759 = 91814759 - 91814687 = prime(5316163) - prime(5316163-12) and prime(5316163) has level 1 in A117563, so prime(5316163)=91814759 has level (1,12).
		

Crossrefs

Cf. A006562 (primes of level (1,1)), A117078, A117563, A006562, A117876, A118464, A118467, A119402, A119403, A119404.

Extensions

Definition and comment reworded following suggestions from the author. - M. F. Hasler, Nov 30 2009

A125572 Primes p=prime(i) of level (1,13), i.e., such that A118534(i)=prime(i-13).

Original entry on oeis.org

35630467, 118877047, 123823081, 140061577, 155032793, 175204303, 184606997, 188871349, 189489733, 232093339, 244004749, 278518081, 309055367, 310542257, 313596551, 315659909, 329918227, 340761691, 389220347, 398329523, 411405833, 422745641, 480428801, 485608819
Offset: 1

Views

Author

Rémi Eismann and Fabien Sibenaler, Jan 27 2007

Keywords

Comments

This subsequence of A125830 and of A162174 gives primes of level (1,13): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			prime(10272256) - prime(10272255) = 184607153 - 184606997 = 184606997 - 184606841 = prime(10272255) - prime(10272255-13) and prime(10272255) has level 1 in A117563, so prime(10272255)=184606997 has level (1,13).
		

Crossrefs

Cf. A006562 (primes of level (1,1)), A117078, A117563, A117876, A118464, A118467, A119402, A119403, A119404.

Extensions

Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009

A125574 Primes p=prime(i) of level (1,14), i.e., such that A118534(i)=prime(i-14).

Original entry on oeis.org

31515413, 69730637, 132102911, 132375259, 215483129, 284491367, 325689253, 388190689, 548369603, 620829113, 633418787, 638213603, 670216277, 793852487, 797759539, 960200149, 1038197399, 1050359137, 1092920249, 1331713301, 1342954871, 1349496367, 1365964199
Offset: 1

Views

Author

Rémi Eismann and Fabien Sibenaler, Jan 27 2007

Keywords

Comments

This subsequence of A125830 and of A162174 gives primes of level (1,14): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

Examples

			prime(15456800) - prime(15456799) = 284491601 - 284491367 = 284491367 - 284491133 = prime(15456799) - prime(15456799-14) and prime(15456799) has level 1 in A117563, so prime(15456799) = 284491367 has level (1,14).
		

Crossrefs

Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.

Programs

  • PARI
    lista(nn) = my(c=15, v=primes(15)); forprime(p=53, nn, if(2*v[c]-p==v[c=c%15+1], print1(precprime(p-1), ", ")); v[c]=p); \\ Jinyuan Wang, Jun 18 2021

Extensions

Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009

A118123 a(n) = number of k's such that prime(n+1) = prime(n) + (prime(n) mod k).

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 1, 3, 2, 4, 3, 1, 4, 3, 3, 2, 5, 4, 7, 6, 2, 2, 2, 7, 2, 5, 2, 1, 2, 3, 1, 3, 3, 7, 6, 7, 2, 1, 2, 8, 7, 1, 3, 5, 4, 1, 1, 3, 2, 6, 5, 5, 3, 2, 3, 2, 2, 4, 2, 7, 6, 1, 6, 2, 1, 6, 3, 2, 2, 2, 5, 3, 2, 7, 3, 6, 3, 6, 2, 7, 6, 5, 2, 6, 5, 10, 3, 2, 3, 2, 2, 2, 3, 1, 9, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = # { k>0 | prime(n+1) - prime(n) = prime(n) % k }, where p % k is the remainder of p divided by k.

Extensions

Edited by M. F. Hasler, Nov 07 2009

A119595 Primes for which the weight as defined in A117078 is 15 and the gap as defined in A001223 is 8.

Original entry on oeis.org

743, 1193, 1523, 1733, 2003, 2243, 2273, 3623, 4583, 4943, 5573, 5693, 6143, 6203, 6473, 7673, 8573, 8933, 9803, 10103, 11243, 11813, 12413, 12503, 13163, 14423, 14843, 15053, 15233, 15383, 16103
Offset: 1

Views

Author

Rémi Eismann, Jun 01 2006, May 04 2007

Keywords

Comments

The prime numbers in this sequence are of the form (30i-7) with i=(level(n)+1)/2, level(n) defined in A117563.

Examples

			a(1)=743 because of 751=743+mod(743;15) and g(n)=751-743=8
30*((49+1)/2)-7=743
a(2)=1193 because of 1201=1193+mod(1193;15) and g(n)=1201-1193=8
30*((79+1)/2)-7=1193
		

Crossrefs

A119596 Primes for which the weight as defined in A117078 is 11 and the gap as defined in A001223 is 10.

Original entry on oeis.org

241, 1627, 2089, 4201, 4663, 4861, 5323, 6247, 6379, 6709, 8821, 9283, 9679, 10141, 12253, 12517, 12781, 13441, 15091, 15289, 15619, 17599, 17929, 19249, 19447, 19843, 21757, 23539, 26839, 28687, 33703, 34429, 34693, 35089, 35353, 36343
Offset: 1

Views

Author

Rémi Eismann, Jun 01 2006, May 04 2007

Keywords

Comments

The prime numbers in this sequence are of the form (22i-1) with i=(level(n)+1)/2, level(n) defined in A117563.

Examples

			a(1)=241 because of 251=241+mod(241;11) and 251-241=10.
22*((21+1)/2)-1=241, level=21
a(2)=1627 because of 1637=1627+mod(1627;11) and 1637-1627=10
22*((147+1)/2)-1=1627, level=147
		

Crossrefs

A119597 Primes for which the weight as defined in A117078 is 11 and the gap as defined in A001223 is 6.

Original entry on oeis.org

61, 677, 941, 1117, 1601, 2063, 2371, 3691, 3911, 4021, 5297, 5407, 6067, 6353, 6991, 7541, 7717, 8311, 8641, 8663, 9103, 9851, 10973, 11897, 12491, 12953, 13591, 13613, 13723, 14537, 15131, 15263, 15307, 15461, 15901, 16363
Offset: 1

Views

Author

Rémi Eismann, Jun 01 2006, May 04 2007

Keywords

Comments

The prime numbers in this sequence are of the form (22i-5) with i=(level(n)+1)/2, level(n) defined in A117563.

Examples

			a(1)=61 because of 67=61+mod(61;11) and 67-61=6.
22*((5+1)/2)-5=61, level=5
a(2)=677 because of 683=677+mod(677;11) and 683-677=6
22*((61+1)/2)-5=677, level=5
		

Crossrefs

A184752 a(n) = largest k such that A014612(n+1) = A014612(n) + (A014612(n) mod k), or 0 if no such k exists.

Original entry on oeis.org

0, 0, 16, 13, 26, 26, 18, 40, 43, 40, 48, 41, 60, 64, 66, 65, 74, 74, 64, 86, 97, 96, 99, 100, 106, 112, 115, 110, 123, 120, 122, 129, 146, 143, 152, 144, 163, 160, 169, 170, 170, 173, 168, 178, 184, 186, 185, 183, 202, 202, 214
Offset: 1

Views

Author

Rémi Eismann, Jan 21 2011

Keywords

Comments

From the definition, a(n) = A014612(n) - A114403(n) if A014612(n) - A114403(n) > A114403(n), 0 otherwise where A014612 are the 3-almost primes and A114403 are the gaps between 3-almost primes.

Examples

			For n = 1 we have A014612(1) = 8, A014612(2) = 12; there is no k such that 12 - 8 = 4 = (8 mod k), hence a(1) = 0.
For n = 3 we have A014612(3) = 18, A014612(4) = 20; 16 is the largest k such that 20 - 18 = 2 = (18 mod k), hence a(3) = 16.
For n = 21 we have A014612(21) = 98, A014612(22) = 99; 97 is the largest k such that 99 - 98 = 1 = (97 mod k), hence a(21) = 97.
		

Crossrefs

Previous Showing 31-40 of 77 results. Next