cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A289223 Number of ways to select 2 disjoint point triples from an n X n X n triangular point grid, each point triple forming an 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 0, 12, 66, 204, 480, 960, 1722, 2856, 4464, 6660, 9570, 13332, 18096, 24024, 31290, 40080, 50592, 63036, 77634, 94620, 114240, 136752, 162426, 191544, 224400, 261300, 302562, 348516, 399504, 455880, 518010, 586272, 661056, 742764, 831810, 928620, 1033632, 1147296
Offset: 2

Views

Author

Heinrich Ludwig, Jun 28 2017

Keywords

Comments

Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A117662(n-1).

Examples

			There are 12 ways to choose two 2 X 2 X 2 triangles (xxx) from a 4 X 4 X 4 point grid, for example:
      x           x          x
     x x         x x        x x
    . x x       x . .      . x .
   . . x .     x x . .    . x x .
The other nine selections are reflections or rotations of these three.
		

Crossrefs

Programs

  • PARI
    Vec(6*x^4*(2 - x)*(1 + x) / (1 - x)^5 + O(x^60)) \\ Colin Barker, Jun 28 2017

Formula

a(n) = (n^4 -4*n^3 -7*n^2 +46*n -48)/2 for n>=2.
From Colin Barker, Jun 28 2017: (Start)
G.f.: 6*x^4*(2 - x)*(1 + x) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.
(End)

A289229 Triangle read by rows: T(n, k) is the number of nonequivalent ways to select k disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 3, 2, 1, 5, 14, 19, 4, 0, 1, 7, 40, 127, 159, 77, 17, 0, 1, 9, 90, 536, 1644, 2569, 1876, 500, 42, 1, 1, 12, 175, 1688, 9548, 31951, 62171, 67765, 39459, 11579, 1547, 47, 0, 1, 15, 308, 4357, 38872, 223346, 832628, 2005948, 3072004, 2897626
Offset: 1

Views

Author

Heinrich Ludwig, Jul 04 2017

Keywords

Comments

The row index starts from 1. The column index k runs from 0 to floor(n*(n+1)/6), which is a trivial upper bound for the maximal number of 2 X 2 X 2 triangles that can be selected from an n X n X n triangular grid.
Rotations and reflections of a selection are not counted. If they are to be counted, see A289222.

Examples

			The triangle begins:
  1;
  1,  1;
  1,  2,   0;
  1,  3,   3,    3;
  1,  5,  14,   19,    4,     0;
  1,  7,  40,  127,  159,    77,    17,     0;
  1,  9,  90,  536, 1644,  2569,  1876,   500,    42,     1;
  1, 12, 175, 1688, 9548, 31951, 62171, 67765, 39459, 11579, 1547, 47, 0;
		

Crossrefs

Columns 2 to 6: A001840, A117662, A289230, A289231, A289232.

A326331 Number of simple graphs covering the vertices {1..n} whose nesting edges are connected.

Original entry on oeis.org

1, 0, 1, 0, 1, 14, 539
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d. A graph has its nesting edges connected if the graph whose vertices are the edges and whose edges are nesting pairs of edges is connected.

Crossrefs

The non-covering case is the binomial transform A326330.
Covering graphs whose crossing edges are connected are A324327.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[nestcmpts[#]]<=1&]],{n,0,5}]

A326339 Number of connected simple graphs with vertices {1..n} and no crossing or nesting edges.

Original entry on oeis.org

1, 0, 1, 4, 12, 36, 108, 324
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.
Appears to be essentially the same as A003946.

Examples

			The a(2) = 1 through a(4) = 36 edge-sets:
  {12}  {12,13}     {12,13,14}
        {12,23}     {12,13,34}
        {13,23}     {12,14,34}
        {12,13,23}  {12,23,24}
                    {12,23,34}
                    {12,24,34}
                    {13,23,34}
                    {14,24,34}
                    {12,13,14,34}
                    {12,13,23,34}
                    {12,14,24,34}
                    {12,23,24,34}
		

Crossrefs

Covering graphs with no crossing or nesting edges are A326329.
Connected simple graphs are A001349.
The case with only crossing edges forbidden is A007297.
Graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A326340 Number of maximal simple graphs with vertices {1..n} and no crossing or nesting edges.

Original entry on oeis.org

1, 1, 1, 1, 4, 9, 19, 42
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Crossrefs

Covering graphs with no crossing or nesting edges are A326329.
The case with only crossing edges forbidden is A000108 shifted right twice.
Simple graphs without crossing or nesting edges are A326244.
Connected graphs with no crossing or nesting edges are A326339.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Subsets[Range[n],{2}]],!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A289230 Number of nonequivalent ways to select 3 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 2, 19, 127, 536, 1688, 4357, 9789, 19844, 37172, 65397, 109335, 175214, 270934, 406329, 593463, 846934, 1184212, 1625979, 2196509, 2924050, 3841240, 4985531, 6399647, 8132044, 10237410, 12777167, 15820007, 19442436, 23729352, 28774625, 34681717, 41564304, 49546932
Offset: 3

Views

Author

Heinrich Ludwig, Jun 30 2017

Keywords

Comments

Rotations and reflections of a selection are not counted. If they are to be counted see A289224.

Examples

			There are two nonequivalent ways to choose three 2 X 2 X 2 triangles (aaa, bbb, ccc) from a 4 X 4 X 4 point grid:
      a           a
     a a         a a
    b c c       b . c
   b b c .     b b c c
Note: aaa, bbb, ccc are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^4*(2 + 9*x + 50*x^2 + 60*x^3 + 37*x^4 - 21*x^5 - 20*x^6 - 4*x^7 + 7*x^8) / ((1 - x)^7*(1 + x)*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Jun 30 2017

Formula

a(n) = (n^6 -6*n^5 -24*n^4 +220*n^3 -153*n^2 -1488*n +2592)/36 + IF(MOD(n, 2) = 1, -1)/2 + IF(MOD(n, 3) = 1, -2)/9.
G.f.: x^4*(2 + 9*x + 50*x^2 + 60*x^3 + 37*x^4 - 21*x^5 - 20*x^6 - 4*x^7 + 7*x^8) / ((1 - x)^7*(1 + x)*(1 + x + x^2)). - Colin Barker, Jun 30 2017

A289231 Number of nonequivalent ways to select 4 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 4, 159, 1644, 9548, 38872, 125367, 342831, 829052, 1822785, 3714519, 7113539, 12935256, 22511616, 37728563, 61194888, 96446684, 148191316, 222597315, 327633979, 473466444, 672912717, 941968139, 1300402591, 1772439504, 2387521212, 3181168199, 4195941108, 5482512012
Offset: 4

Views

Author

Heinrich Ludwig, Jun 30 2017

Keywords

Comments

Rotations and reflections of a selection are not counted. If they are to be counted see A289225.

Examples

			There are four nonequivalent ways to choose four 2 X 2 X 2 triangles (aaa, ..., ddd) from a 5 X 5 X 5 point grid:
      a           a           a           .
     a a         a a         a a         a a
    b c c       . d .       . . .       . a .
   b b c d     b d d c     b c c d     b c c d
  . . . d d   b b . c c   b b c d d   b b c d d
Note: aaa, ..., ddd are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^5*(4 + 143*x + 1024*x^2 + 3612*x^3 + 7423*x^4 + 10001*x^5 + 8395*x^6 + 3273*x^7 - 1362*x^8 - 2393*x^9 - 878*x^10 + 488*x^11 + 539*x^12 + 101*x^13 - 89*x^14 - 41*x^15) / ((1 - x)^9*(1 + x)^2*(1 + x + x^2)^3) + O(x^40))) \\ Colin Barker, Jun 30 2017

Formula

a(n) = (n^8 -8*n^7 -50*n^6 +556*n^5 +261*n^4 -12724*n^3 +19088*n^2 +86016*n -201024)/144 + IF(MOD(n, 2) = 1, -2*n +5)/4 + IF(MOD(n, 3) = 1, -n^2 +2*n +12)/9.
G.f.: x^5*(4 + 143*x + 1024*x^2 + 3612*x^3 + 7423*x^4 + 10001*x^5 + 8395*x^6 + 3273*x^7 - 1362*x^8 - 2393*x^9 - 878*x^10 + 488*x^11 + 539*x^12 + 101*x^13 - 89*x^14 - 41*x^15) / ((1 - x)^9*(1 + x)^2*(1 + x + x^2)^3). - Colin Barker, Jun 30 2017

A289232 Number of nonequivalent ways to select 5 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 77, 2569, 31951, 223346, 1089665, 4161705, 13314461, 37246668, 93781829, 216901737, 467727523, 951014654, 1839155785, 3406165049, 6074688977, 10479716856, 17553399741, 28636182537, 45620375447, 71133273514, 108768061009, 163371926729, 241402171109, 351362501892
Offset: 5

Views

Author

Heinrich Ludwig, Jul 01 2017

Keywords

Comments

Rotations and reflections of a selection are not counted. If they are to be counted see A289226.

Examples

			There are 77 nonequivalent ways to choose five 2 X 2 X 2 triangles (aaa, ..., eee) from a 6 X 6 X 6 point grid, for example:
        .               a
       . .             a a
      . . .           . d .
     a a b b         b d d c
    c a d b e       b b e c c
   c c d d e e     . . e e . .
Note: aaa, ..., eee are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^6*(77 + 1953*x + 13324*x^2 + 29499*x^3 + 18617*x^4 - 15880*x^5 - 17638*x^6 + 4876*x^7 + 8057*x^8 - 881*x^9 - 1966*x^10 + 81*x^11 + 201*x^12) / ((1 - x)^11*(1 + x)^3) + O(x^40))) \\ Colin Barker, Jul 01 2017

Formula

a(n) = (n^10 -10*n^9 -85*n^8 +1160*n^7 +1345*n^6 -49084*n^5 +61035*n^4 +897210*n^3 -2205196*n^2 -5725656*n +18174960)/720 + IF(MOD(n, 2) = 1, -2*n^2 +13*n -11)/4.
G.f.: x^6*(77 + 1953*x + 13324*x^2 + 29499*x^3 + 18617*x^4 - 15880*x^5 - 17638*x^6 + 4876*x^7 + 8057*x^8 - 881*x^9 - 1966*x^10 + 81*x^11 + 201*x^12) / ((1 - x)^11*(1 + x)^3). - Colin Barker, Jul 01 2017

A208518 Triangle of coefficients of polynomials u(n,x) jointly generated with A208519; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 7, 3, 1, 10, 16, 14, 5, 1, 15, 30, 40, 28, 8, 1, 21, 50, 90, 93, 53, 13, 1, 28, 77, 175, 238, 203, 99, 21, 1, 36, 112, 308, 518, 588, 428, 181, 34, 1, 45, 156, 504, 1008, 1428, 1380, 873, 327, 55, 1, 55, 210, 780, 1806, 3066, 3690, 3105
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

coefficient of x^(n-1): = Fibonacci(n) = A000045(n)
col 1: A000012
col 2: A000217 (triangular numbers)
col 3: A005581
col 4: A117662
alternating row sums: signed version of (-1+Fibonacci(n))

Examples

			First five rows:
1
1...1
1...3....2
1...6....7....3
1...10...16...14...5
First five polynomials u(n,x):
1
1 + x
1 + 3x + 2x^2
1 + 6x + 7x^2 + 3x^3
1 + 10x + 16x^2 + 14x^3 + 5x^4
		

Crossrefs

Cf. A208519.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208518 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A208519 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A326260 MM-numbers of capturing, non-nesting multiset partitions (with empty parts allowed).

Original entry on oeis.org

2599, 4163, 5198, 6463, 6893, 7291, 7797, 8326, 8507, 9131, 9959, 10396, 10649, 11041, 11639, 12489, 12811, 12926, 12995, 13786, 14237, 14582, 14899, 15157, 15594, 16123, 16403, 16652, 17014, 17063, 17089, 17141, 18101, 18193, 18262, 18643, 18659, 19337, 19389
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A set partition is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and y > t or x > z and y < t. It is nesting if it has two blocks of the form {...x,y...} and {...z,t...} where x < z and y > t or x > z and y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   2599: {{2,2},{1,2,3}}
   4163: {{2,2},{1,2,4}}
   5198: {{},{2,2},{1,2,3}}
   6463: {{2,2},{1,1,2,3}}
   6893: {{1,2,2},{1,2,3}}
   7291: {{2,2},{1,2,5}}
   7797: {{1},{2,2},{1,2,3}}
   8326: {{},{2,2},{1,2,4}}
   8507: {{2,3},{1,2,4}}
   9131: {{2,2},{1,2,6}}
   9959: {{2,2},{1,1,2,4}}
  10396: {{},{},{2,2},{1,2,3}}
  10649: {{2,2},{1,2,2,3}}
  11041: {{1,2,2},{1,2,4}}
  11639: {{2,2,2},{1,2,3}}
  12489: {{1},{2,2},{1,2,4}}
  12811: {{2,2},{1,2,7}}
  12926: {{},{2,2},{1,1,2,3}}
  12995: {{2},{2,2},{1,2,3}}
  13786: {{},{1,2,2},{1,2,3}}
		

Crossrefs

Non-nesting set partitions are A000108.
Capturing set partitions are A326243.
Capturing, non-nesting set partitions are A326249.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.

Programs

  • Mathematica
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    Select[Range[10000],!nesXQ[primeMS/@primeMS[#]]&&capXQ[primeMS/@primeMS[#]]&]
Previous Showing 11-20 of 29 results. Next