cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A151668 G.f.: Product_{k>=0} (1 + 2*x^(3^k)).

Original entry on oeis.org

1, 2, 0, 2, 4, 0, 0, 0, 0, 2, 4, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 4, 8, 0, 0, 0, 0, 4, 8, 0, 8, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 4, 8, 0, 0, 0, 0, 4, 8, 0, 8, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151669 G.f.: Product_{k>=0} (1 + 2*x^(4^k)).

Original entry on oeis.org

1, 2, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 8, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151670 G.f.: Product_{k>=0} (1 + 2*x^(5^k)).

Original entry on oeis.org

1, 2, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151671 G.f.: Product_{k >= 0} (1 + 3*x^(5^k)).

Original entry on oeis.org

1, 3, 0, 0, 0, 3, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 0, 0, 0, 9, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151672 G.f.: Product_{k>=0} (1 + 4*x^(3^k)).

Original entry on oeis.org

1, 4, 0, 4, 16, 0, 0, 0, 0, 4, 16, 0, 16, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 0, 16, 64, 0, 0, 0, 0, 16, 64, 0, 64, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 0, 16, 64, 0, 0, 0, 0, 16, 64, 0, 64, 256, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151673 G.f.: Product_{k>=0} (1 + 4*x^(4^k)).

Original entry on oeis.org

1, 4, 0, 0, 4, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 0, 0, 16, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 0, 0, 16, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 64, 0, 0, 64, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A151674 G.f.: Product_{k >= 0} (1 + 4*x^(5^k)).

Original entry on oeis.org

1, 4, 0, 0, 0, 4, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 16, 0, 0, 0, 16, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.

A117939 Triangle related to powers of 3 partitions of n.

Original entry on oeis.org

1, 2, 1, 1, -2, 1, 2, 0, 0, 1, 4, 2, 0, 2, 1, 2, -4, 2, 1, -2, 1, 1, 0, 0, -2, 0, 0, 1, 2, 1, 0, -4, -2, 0, 2, 1, 1, -2, 1, -2, 4, -2, 1, -2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, -4, 2, 0, 0, 0, 0, 0, 0, 1, -2, 1, 4, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 8, 4, 0, 4, 2, 0, 0, 0, 0, 4, 2, 0, 2, 1
Offset: 0

Views

Author

Paul Barry, Apr 05 2006

Keywords

Examples

			Triangle begins
  1;
  2,  1;
  1, -2, 1;
  2,  0, 0,  1;
  4,  2, 0,  2,  1;
  2, -4, 2,  1, -2,  1;
  1,  0, 0, -2,  0,  0, 1;
  2,  1, 0, -4, -2,  0, 2,  1;
  1, -2, 1, -2,  4, -2, 1, -2, 1;
		

Crossrefs

Cf. A120854 (matrix log), A117941 (inverse), A117947 (matrix square-root).

Programs

  • Mathematica
    T[n_, k_]:= Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j, 0, n}]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
  • PARI
    T(n,k)=(matrix(n+1,n+1,r,c,(binomial(r-1,c-1)+1)%3-1)^2)[n+1,k+1] \\ Paul D. Hanna, Jul 08 2006
    
  • Sage
    def A117939(n, k): return sum(jacobi_symbol(binomial(n, j), 3)*jacobi_symbol(binomial(n-j, k), 3) for j in (0..n))
    flatten([[A117939(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Oct 29 2021

Formula

Triangle T(n,k) = Sum_{j=0..n} L(C(n,j)/3)*L(C(n-j,k)/3) where L(j/p) is the Legendre symbol of j and p.
T(n, k) mod 2 = A117944(n,k).
T(n, 0) = A059151(n).
T(n, 1) = A117946(n).
Sum_{k=0..n} T(n, k) = A117940(n).
Matrix square of triangle A117947. Matrix log is the integer triangle A120854. - Paul D. Hanna, Jul 08 2006

A370439 Expansion of g.f. A(x) satisfying A(x) = A( x*A(x)^2 + 3*x*A(x)^3 )^(1/3).

Original entry on oeis.org

1, 3, 9, 30, 126, 648, 3591, 19953, 110079, 610500, 3440493, 19742616, 114918138, 675417474, 3996992547, 23791052862, 142393544757, 856746349992, 5179722791274, 31449875426622, 191678795532801, 1172198278949454, 7190652243631437, 44235165115911312, 272837082264574914
Offset: 1

Views

Author

Paul D. Hanna, Mar 27 2024

Keywords

Comments

Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Examples

			G.f.: A(x) = x + 3*x^2 + 9*x^3 + 30*x^4 + 126*x^5 + 648*x^6 + 3591*x^7 + 19953*x^8 + 110079*x^9 + 610500*x^10 + 3440493*x^11 + 19742616*x^12 + ...
where A(x)^3 = A( x*A(x)^2 + 3*x*A(x)^3 ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A=concat(A,0);
    F=Ser(A); A[#A] = polcoeff(subst(F,x,x*F^2 + 3*x*F^3) - F^3,#A+1) );A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1.a) A(x)^3 = A( x*A(x)^2 * (1 + 3*A(x)) ).
(1.b) A(x)^9 = A( x*A(x)^8 * (1 + 3*A(x))*(1 + 3*A(x)^3) ).
(1.c) A(x)^27 = A( x*A(x)^26 * (1 + 3*A(x))*(1 + 3*A(x)^3)*(1 + 3*A(x)^9) ).
(1.d) A(x)^(3^n) = A( x*A(x)^(3^n-1) * Product_{k=0..n-1} (1 + 3*A(x)^(3^k)) ).
(2) A(x) = x * Product_{n>=0} (1 + 3*A(x)^(3^n)).
(3) A(x) = Series_Reversion( x / Product_{n>=0} (1 + 3*x^(3^n)) ).
(4) A(x) = x * Sum_{n>=0} A117940(n) * A(x)^n, where g.f. of A117940 equals Product{k>=0} 1 + 3*x^(3^k).
a(n) ~ c * d^n / n^(3/2), where d = 6.5583689184153129045048... and c = 0.129061736750222730297... - Vaclav Kotesovec, Apr 05 2024
The radius of convergence r of g.f. A(x) and A(r) satisfy 1 = Sum_{n>=0} 3^(n+1) * A(r)^(3^n) / (1 + 3*A(r)^(3^n)) and r = A(r) / Product_{n>=0} (1 + 3*A(r)^(3^n)), where r = 0.1524769363297159918479... = 1/d (d is given above) and A(r) = 0.3905308673397427979651361312666180120359942797557... - Paul D. Hanna, May 22 2024

A374626 Expansion of Product_{k>=0} 1 / (1 - 3*x^(3^k)).

Original entry on oeis.org

1, 3, 9, 30, 90, 270, 819, 2457, 7371, 22143, 66429, 199287, 597951, 1793853, 5381559, 16144947, 48434841, 145304523, 435914388, 1307743164, 3923229492, 11769690933, 35309072799, 105927218397, 317781662562, 953344987686, 2860034963058, 8580104911317
Offset: 0

Views

Author

Seiichi Manyama, Jul 14 2024

Keywords

Crossrefs

For generating functions Product_{k>=0} 1 / (1 - a*x^(b^k)) for the following values of (a,b) see: (1,2) A018819, (1,3) A062051, (2,2) A309728.
Cf. A117940.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/prod(k=0, logint(N,3), 1-3*x^3^k))

Formula

G.f. A(x) satisfies A(x) = A(x^3)/(1 - 3*x).
a(n) is divisible by 3 for n > 0.
Previous Showing 11-20 of 20 results.