cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A214871 Natural numbers placed in table T(n,k) layer by layer. The order of placement - T(n,n), T(1,n), T(n,1), T(2,n), T(n,2),...T(n-1,n), T(n,n-1). Table T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 3, 4, 6, 2, 7, 11, 8, 9, 12, 18, 13, 5, 14, 19, 27, 20, 15, 16, 21, 28, 38, 29, 22, 10, 23, 30, 39, 51, 40, 31, 24, 25, 32, 41, 52, 66, 53, 42, 33, 17, 34, 43, 54, 67, 83, 68, 55, 44, 35, 36, 45, 56, 69, 84, 102, 85, 70, 57, 46, 26, 47, 58, 71, 86, 103, 123
Offset: 1

Views

Author

Boris Putievskiy, Mar 11 2013

Keywords

Comments

a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1).
Enumeration table T(n,k) layer by layer. The order of the list:
T(1,1)=1;
T(2,2), T(1,2), T(2,1);
. . .
T(n,n), T(1,n), T(n,1), T(2,n), T(n,2),...T(n-1,n), T(n,n-1);
. . .

Examples

			The start of the sequence as table:
  1....3...6..11..18..27...
  4....2...8..13..20..29...
  7....9...5..15..22..31...
  12..14..16..10..24..33...
  19..21..23..25..17..35...
  28..30..32..34..36..26...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  3,4;
  6,2,7;
  11,8,9,12;
  18,13,5,14,19;
  27,20,15,16,21,28;
  . . .
		

Crossrefs

Cf. A060734, A060736, A185725, A213921, A213922; table T(n,k) contains: in rows A059100, A087475, A114949, A189833, A114948, A114962; in columns A117950, A117951, A117619, A189834, A189836; the main diagonal is A002522.

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i == j:
       result=(i-1)**2+1
    if i > j:
       result=(i-1)**2+2*j+1
    if i < j:
       result=(j-1)**2+2*i

Formula

As table
T(n,k) = (n-1)^2+1, if n=k;
T(n,k) = (n-1)^2+2*k+1, if n>k;
T(n,k) = (k-1)^2+2*n, if n
As linear sequence
a(n) = (i-1)^2+1, if i=j;
a(n) = (i-1)^2+2*j+1, if i>j;
a(n) = (j-1)^2+2*i, if i>j; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A255845 a(n) = 2*n^2 + 10.

Original entry on oeis.org

10, 12, 18, 28, 42, 60, 82, 108, 138, 172, 210, 252, 298, 348, 402, 460, 522, 588, 658, 732, 810, 892, 978, 1068, 1162, 1260, 1362, 1468, 1578, 1692, 1810, 1932, 2058, 2188, 2322, 2460, 2602, 2748, 2898, 3052, 3210, 3372, 3538, 3708, 3882, 4060, 4242, 4428
Offset: 0

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

This is the case k=5 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2.
Equivalently, numbers m such that 2*m - 20 is a square.

Crossrefs

Cf. A016825 (first differences), A117951.
Subsequence of A047463.
Cf. similar sequences listed in A255843.

Programs

Formula

a(n) = 2*A117951(n).
From Vincenzo Librandi, Mar 08 2015: (Start)
G.f.: 2*(5 - 9*x + 6*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(5)*Pi*coth(sqrt(5)*Pi))/20.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(5)*Pi*cosech(sqrt(5)*Pi))/20. (End)
E.g.f.: 2*exp(x)*(5 + x + x^2). - Elmo R. Oliveira, Jan 25 2025

Extensions

Edited by Bruno Berselli, Mar 13 2015

A361696 Semiprimes of the form k^2 + 5.

Original entry on oeis.org

6, 9, 14, 21, 69, 86, 201, 329, 446, 489, 581, 681, 734, 789, 905, 1094, 1769, 1941, 2606, 2921, 3254, 3369, 3849, 3974, 4101, 4629, 4766, 6729, 7061, 7401, 8105, 8654, 9609, 9806, 10409, 10821, 11669, 12326, 13929, 17429, 17961, 19049, 20741, 23109, 23721, 24341, 27561, 30281, 31334, 32405
Offset: 1

Author

Elmo R. Oliveira, Mar 20 2023

Keywords

Examples

			69 is a term because 8^2 + 5 = 69 = 3*23.
		

Crossrefs

Intersection of A117951 and A001358.

Programs

  • Mathematica
    Select[Range[200]^2 + 5, PrimeOmega[#] == 2 &] (* Paolo Xausa, Aug 21 2025 *)
  • PARI
    isok(k) = issquare(k-5) && (bigomega(k)==2); \\ Michel Marcus, Mar 27 2023

Formula

a(n) = A242333(n)^2 + 5.
Previous Showing 11-13 of 13 results.