cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A342726 Niven numbers in base i-1: numbers that are divisible by the sum of their digits in base i-1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 12, 15, 16, 18, 20, 24, 25, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 50, 54, 60, 64, 65, 66, 70, 77, 80, 88, 90, 96, 99, 100, 110, 112, 120, 124, 125, 126, 130, 140, 144, 145, 147, 150, 156, 160, 168, 170, 180, 182, 184, 185, 186, 190, 192
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Comments

Numbers k that are divisible by A066323(k).
Equivalently, Niven numbers in base -4, since A066323(k) is also the sum of the digits of k in base -4.

Examples

			2 is a term since its representation in base i-1 is 1100 and 1+1+0+0 = 2 is a divisor of 2.
10 is a term since its representation in base i-1 is 111001100 and 1+1+1+0+0+1+1+0+0 = 5 is a divisor of 10.
		

Crossrefs

Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary), A342426 (base 3/2).

Programs

  • Mathematica
    v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}; q[n_] := Divisible[n, Total[Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]]; Select[Range[200], q]

A344341 Gray-code Niven numbers: numbers divisible by the number of 1's in their binary reflected Gray code (A005811).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 20, 24, 27, 28, 30, 31, 32, 33, 36, 39, 40, 42, 44, 45, 48, 51, 52, 56, 57, 60, 62, 63, 64, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 99, 100, 104, 105, 108, 111, 112, 116, 120, 123, 124, 126, 127, 128, 129, 132, 135, 136
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Examples

			2 is a term since its Gray code is 11 and 1+1 = 2 is a divisor of 2.
6 is a term since its Gray code is 101 and 1+0+1 = 2 is a divisor of 6.
		

Crossrefs

Subsequences: A344342, A344343, A344344.
Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary), A342426 (base 3/2), A342726 (base i-1).

Programs

  • Mathematica
    gcNivenQ[n_] := Divisible[n, DigitCount[BitXor[n, Floor[n/2]], 2, 1]]; Select[Range[150], gcNivenQ]

A351714 Lucas-Niven numbers: numbers that are divisible by the number of terms in their minimal (or greedy) representation in terms of the Lucas numbers (A130310).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 18, 20, 22, 24, 27, 29, 30, 32, 36, 39, 40, 42, 47, 48, 50, 54, 57, 58, 60, 64, 66, 69, 72, 76, 78, 80, 81, 84, 90, 92, 94, 96, 100, 104, 108, 120, 123, 124, 126, 129, 130, 132, 134, 135, 138, 140, 144, 152, 153, 156, 159, 160
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Comments

Numbers k such that A116543(k) | k.

Examples

			6 is a term since its minimal Lucas representation, A130310(6) = 1001, has A116543(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    lucasNivenQ[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; Divisible[n, Plus @@ IntegerDigits[Total[2^s], 2]]]; Select[Range[160], lucasNivenQ]

A351719 Lazy-Lucas-Niven numbers: numbers divisible by the number of terms in their maximal (or lazy) representation in terms of the Lucas numbers (A130311).

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 20, 25, 40, 42, 54, 60, 66, 78, 84, 91, 96, 104, 112, 120, 126, 144, 154, 161, 168, 175, 176, 180, 182, 184, 192, 203, 210, 216, 217, 224, 232, 234, 240, 243, 264, 270, 280, 288, 304, 306, 310, 315, 320, 322, 328, 336, 344, 350, 360, 378
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Comments

Numbers k such that A131343(k) | k.

Examples

			6 is a term since its maximal Lucas representation, A130311(6) = 111, has A131343(6) = 3 1's and 6 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    lazy = Select[IntegerDigits[Range[3000], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[# * Reverse @ LucasL[Range[0, Length[#] - 1]]] & /@ lazy; s = FromDigits /@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]; Position[Divisible[Range[Length[s]], Plus @@@ IntegerDigits[s]], True] // Flatten

A352089 Tribonacci-Niven numbers: numbers that are divisible by the number of terms in their minimal (or greedy) representation in terms of the tribonacci numbers (A278038).

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 13, 14, 18, 20, 21, 24, 26, 27, 28, 30, 33, 36, 39, 40, 44, 46, 48, 56, 60, 68, 69, 72, 75, 76, 80, 81, 82, 84, 87, 88, 90, 94, 96, 100, 108, 115, 116, 120, 126, 128, 129, 132, 135, 136, 138, 140, 149, 150, 156, 162, 168, 174, 176, 177, 180
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Numbers k such that A278043(k) | k.
The positive tribonacci numbers (A000073) are all terms.
If k = A000073(A042964(m)) is an odd tribonacci number, then k+1 is a term.
Ray (2005) and Ray and Cooper (2006) called these numbers "3-Zeckendorf Niven numbers" and proved that their asymptotic density is 0. - Amiram Eldar, Sep 06 2024

Examples

			6 is a term since its minimal tribonacci representation, A278038(6) = 110, has A278043(6) = 2 1's and 6 is divisible by 2.
		

References

  • Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[180], q]

A352107 Lazy-tribonacci-Niven numbers: numbers that are divisible by the number of terms in their maximal (or lazy) representation in terms of the tribonacci numbers (A352103).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 20, 21, 24, 28, 30, 33, 36, 39, 40, 48, 50, 56, 60, 68, 70, 72, 75, 76, 80, 90, 96, 100, 108, 115, 116, 120, 135, 136, 140, 150, 155, 156, 160, 162, 168, 175, 176, 177, 180, 184, 185, 188, 195, 198, 204, 205, 208, 215, 216, 225, 231, 260
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

Numbers k such that A352104(k) | k.

Examples

			6 is a term since its maximal tribonacci representation, A352103(6) = 110, has A352104(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[300], q]

A352320 Pell-Niven numbers: numbers that are divisible by the sum of the digits in their minimal (or greedy) representation in terms of the Pell numbers (A317204).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 12, 14, 15, 18, 20, 24, 28, 29, 30, 33, 34, 36, 39, 40, 42, 44, 48, 50, 58, 60, 63, 64, 68, 70, 72, 82, 84, 87, 88, 90, 92, 96, 110, 111, 112, 115, 116, 120, 125, 126, 135, 140, 141, 144, 155, 164, 165, 168, 169, 170, 174, 180, 183, 184, 186
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A265744(k) | k.
All the positive Pell numbers (A000129) are terms.

Examples

			6 is a term since its minimal Pell representation, A317204(6) = 101, has A265744(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[200], q]

A339214 Factorial-base self numbers: numbers not of the form k + A034968(k).

Original entry on oeis.org

1, 4, 11, 18, 36, 43, 61, 68, 86, 93, 111, 118, 125, 132, 139, 157, 164, 182, 189, 207, 214, 232, 239, 246, 253, 260, 278, 285, 303, 310, 328, 335, 353, 360, 367, 374, 381, 399, 406, 424, 431, 449, 456, 474, 481, 488, 495, 502, 520
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2020

Keywords

Comments

Analogous to self numbers (A003052) using factorial base representation (A007623) instead of decimal expansion.
The numbers of terms that do not exceed 10^k, for k = 0, 1, ..., are 1, 2, 10, 90, 878, 8749, 87455, 874499, 8744934, 87449296, 874492907, ... . Apparently, the asymptotic density of this sequence exists and equals 0.08744929... . - Amiram Eldar, Aug 08 2025

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    max = 6; s[n_] := n + Plus @@ IntegerDigits[n, MixedRadix[Range[max, 2, -1]]]; m = max!; Complement[Range[m], Array[s, m]]

A352342 Lazy-Pell-Niven numbers: numbers that are divisible by the sum of the digits in their maximal (or lazy) representation in terms of the Pell numbers (A352339).

Original entry on oeis.org

1, 2, 4, 9, 12, 15, 20, 24, 25, 28, 30, 35, 40, 48, 50, 54, 56, 60, 63, 64, 70, 72, 78, 84, 88, 91, 96, 102, 115, 120, 136, 144, 160, 162, 168, 180, 182, 184, 189, 207, 209, 210, 216, 217, 234, 246, 256, 261, 270, 304, 306, 308, 315, 320, 328, 333, 350, 352, 357
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A352340(k) | k.

Examples

			4 is a term since its maximal Pell representation, A352339(4) = 11, has the sum of digits A352340(4) = 1+1 = 2 and 4 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; q[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; Select[Range[300], q]

A352508 Catalan-Niven numbers: numbers that are divisible by the sum of the digits in their representation in terms of the Catalan numbers (A014418).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 12, 14, 16, 18, 21, 24, 28, 30, 32, 33, 40, 42, 44, 45, 48, 55, 56, 57, 60, 65, 72, 78, 80, 84, 88, 95, 100, 105, 112, 126, 128, 130, 132, 134, 135, 138, 140, 144, 145, 146, 147, 152, 155, 156, 168, 170, 174, 180, 184, 185, 195, 210, 216
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2022

Keywords

Comments

Numbers k such that A014420(k) | k.
All the Catalan numbers (A000108) are terms.
If k is an odd Catalan number (A038003), then k+1 is a term.

Examples

			4 is a term since its Catalan representation, A014418(4) = 20, has the sum of digits A014420(4) = 2 + 0 = 2 and 4 is divisible by 2.
9 is a term since its Catalan representation, A014418(9) = 120, has the sum of digits A014420(9) = 1 + 2 + 0 = 3 and 9 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    c[n_] := c[n] = CatalanNumber[n]; q[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; Divisible[n, Plus @@ IntegerDigits[Total[4^(s - 1)], 4]]]; Select[Range[216], q]
Previous Showing 11-20 of 36 results. Next