cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A320221 Irregular triangle where T(n,k) is the number of unlabeled series-reduced rooted trees with n leaves in which every leaf is at height k, (n>=1, min(1,n-1) <= k <= log_2(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 1, 7, 1, 1, 11, 4, 1, 13, 6, 1, 20, 16, 1, 23, 23, 1, 33, 46, 1, 40, 70, 1, 54, 127, 1, 1, 65, 189, 1, 1, 87, 320, 5, 1, 104, 476, 10, 1, 136, 771, 32, 1, 164, 1145, 63, 1, 209, 1795, 154, 1, 252, 2657, 304, 1, 319, 4091, 656
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Examples

			Triangle begins:
  1
  1
  1
  1  1
  1  1
  1  3
  1  3
  1  6  1
  1  7  1
  1 11  4
  1 13  6
  1 20 16
  1 23 23
  1 33 46
  1 40 70
The T(11,3) = 6 rooted trees:
   (((oo)(oo))((oo)(ooooo)))
   (((oo)(oo))((ooo)(oooo)))
   (((oo)(ooo))((oo)(oooo)))
   (((oo)(ooo))((ooo)(ooo)))
  (((oo)(oo))((oo)(oo)(ooo)))
  (((oo)(ooo))((oo)(oo)(oo)))
		

Crossrefs

Row sums are A120803. Second column is A083751. A regular version is A320179.

Programs

  • Mathematica
    qurt[n_]:=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[qurt/@ptn]],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}]];
    DeleteCases[Table[Length[Select[qurt[n],SameQ[##,k]&@@Length/@Position[#,{}]&]],{n,10},{k,0,n-1}],0,{2}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    T(n)={my(u=vector(n), v=vector(n), h=1); u[1]=1; while(u, v+=u*h; h*=x; u=EulerT(u)-u); v[1]=x; [Vecrev(p/x) | p<-v]}
    { my(A=T(15)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 09 2020

Extensions

Terms a(36) and beyond from Andrew Howroyd, Dec 09 2020
Name clarified by Andrew Howroyd, Dec 09 2020

A320266 Number of balanced orderless tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 6, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 3, 4, 1, 5, 1, 9, 2, 2, 2, 11, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 17, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 13, 1, 2, 4, 19, 2, 5, 1, 4, 2, 5, 1, 24, 1, 2, 4, 4, 2, 5, 1, 17, 6, 2, 1, 13, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

A rooted tree is balanced if all leaves are the same distance from the root.
An orderless tree-factorization of n is either (case 1) the number n itself or (case 2) a finite multiset of two or more orderless tree-factorizations, one of each factor in a factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(36) = 11 balanced orderless tree-factorizations:
  36,
  (2*18), (3*12), (4*9), (6*6),
  (2*2*9), (2*3*6), (3*3*4),
  (2*2*3*3), ((2*2)*(3*3)), ((2*3)*(2*3)).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    oltfacs[n_]:=If[n<=1,{{}},Prepend[Union@@Function[q,Sort/@Tuples[oltfacs/@q]]/@DeleteCases[facs[n],{n}],n]];
    Table[Length[Select[oltfacs[n],SameQ@@Length/@Position[#,_Integer]&]],{n,100}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={my(u=vector(n, i, 1), v=vector(n)); while(u, v+=u; u[1]=1; u=MultEulerT(u)-u); v} \\ Andrew Howroyd, Nov 18 2018

Formula

a(p^n) = A320160(n) for prime p. - Andrew Howroyd, Nov 18 2018

A320267 Number of balanced complete orderless tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

a(1) = 1 by convention.
A rooted tree is balanced if all leaves are the same distance from the root.
An orderless tree-factorization (see A292504 for definition) is complete if all leaves are prime numbers.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(96) = 5 balanced complete orderless tree-factorizations:
     (2*2*2*2*2*3)
   ((2*2)*(2*2*2*3))
   ((2*3)*(2*2*2*2))
   ((2*2*2)*(2*2*3))
  ((2*2)*(2*2)*(2*3))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    oltfacs[n_]:=If[n<=1,{{}},Prepend[Union@@Function[q,Sort/@Tuples[oltfacs/@q]]/@DeleteCases[facs[n],{n}],n]];
    Table[Length[Select[oltfacs[n],And[SameQ@@Length/@Position[#,_Integer],FreeQ[#,_Integer?(!PrimeQ[#]&)]]&]],{n,100}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={my(u=vector(n, i, i==1 || isprime(i)), v=vector(n)); while(u, v+=u; u[1]=1; u=MultEulerT(u)-u); v} \\ Andrew Howroyd, Nov 18 2018

Formula

a(p^n) = A120803(n) for prime p. - Andrew Howroyd, Nov 18 2018

A131909 Triangle, read by rows, where T(n,k) = T(n-1,k-2) + T(n-1,k-1) for n>=k>1, with T(0,0)=1 and T(n,0) = T(n+1,1) = T(n-1,n-1) for n>0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 3, 3, 5, 5, 3, 5, 5, 6, 8, 8, 5, 8, 8, 10, 11, 14, 14, 8, 13, 13, 16, 18, 21, 25, 25, 14, 22, 21, 26, 29, 34, 39, 46, 46, 25, 39, 36, 43, 47, 55, 63, 73, 85, 85, 46, 71, 64, 75, 79, 90, 102, 118, 136, 158, 158, 85, 131, 117, 135, 139, 154, 169
Offset: 0

Views

Author

Paul D. Hanna, Jul 26 2007

Keywords

Comments

A119262(n) is the number of B-trees of order infinity with n leaves.

Examples

			Triangle begins:
1;
1, 1;
1, 1, 2;
2, 1, 2, 3;
3, 2, 3, 3, 5;
5, 3, 5, 5, 6, 8;
8, 5, 8, 8, 10, 11, 14;
14, 8, 13, 13, 16, 18, 21, 25;
25, 14, 22, 21, 26, 29, 34, 39, 46;
46, 25, 39, 36, 43, 47, 55, 63, 73, 85;
85, 46, 71, 64, 75, 79, 90, 102, 118, 136, 158;
158, 85, 131, 117, 135, 139, 154, 169, 192, 220, 254, 294; ...
Illustrate T(n,k) = T(n-1,k-2) + T(n-1,k-1):
T(5,3) = T(4,1) + T(4,2) = 2 + 3 = 5;
T(6,4) = T(5,2) + T(5,3) = 5 + 5 = 10;
T(8,3) = T(7,1) + T(7,2) = 8 +13 = 21.
		

Crossrefs

Cf. A119262 (columns 0, 1 and main diagonal); A131910 (central terms).

Programs

  • PARI
    T(n,k)=if(k<0 || n
    				

Formula

Row sums equal powers of 2. T(n,0) = A119262(n+1) for n>=0, where g.f. G(x) of A119262 satisfies: G(x) = x + G(x^2/(1-x)).

A352042 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-2*k-1,k) * a(k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 61, 93, 144, 226, 359, 574, 920, 1475, 2361, 3769, 6000, 9528, 15100, 23897, 37789, 59739, 94446, 149365, 236322, 374073, 592357, 938311, 1486625, 2355620, 3732704, 5914682, 9371599, 14847866, 23522460, 37262742, 59026662
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 2 k - 1, k] a[k], {k, 0, Floor[(n - 1)/3]}]; Table[a[n], {n, 0, 43}]
    nmax = 43; A[] = 0; Do[A[x] = 1 + x A[x^3/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(x^3/(1 - x)) / (1 - x).

A352043 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-3*k-1,k) * a(k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250, 346, 482, 678, 963, 1380, 1994, 2903, 4252, 6254, 9222, 13616, 20109, 29681, 43755, 64394, 94583, 138632, 202755, 295906, 430986, 626585, 909500, 1318384, 1909042, 2762122, 3994290
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 3 k - 1, k] a[k], {k, 0, Floor[(n - 1)/4]}]; Table[a[n], {n, 0, 46}]
    nmax = 46; A[] = 0; Do[A[x] = 1 + x A[x^4/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(x^4/(1 - x)) / (1 - x).
Previous Showing 11-16 of 16 results.