A320221
Irregular triangle where T(n,k) is the number of unlabeled series-reduced rooted trees with n leaves in which every leaf is at height k, (n>=1, min(1,n-1) <= k <= log_2(n)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 1, 7, 1, 1, 11, 4, 1, 13, 6, 1, 20, 16, 1, 23, 23, 1, 33, 46, 1, 40, 70, 1, 54, 127, 1, 1, 65, 189, 1, 1, 87, 320, 5, 1, 104, 476, 10, 1, 136, 771, 32, 1, 164, 1145, 63, 1, 209, 1795, 154, 1, 252, 2657, 304, 1, 319, 4091, 656
Offset: 1
Triangle begins:
1
1
1
1 1
1 1
1 3
1 3
1 6 1
1 7 1
1 11 4
1 13 6
1 20 16
1 23 23
1 33 46
1 40 70
The T(11,3) = 6 rooted trees:
(((oo)(oo))((oo)(ooooo)))
(((oo)(oo))((ooo)(oooo)))
(((oo)(ooo))((oo)(oooo)))
(((oo)(ooo))((ooo)(ooo)))
(((oo)(oo))((oo)(oo)(ooo)))
(((oo)(ooo))((oo)(oo)(oo)))
-
qurt[n_]:=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[qurt/@ptn]],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}]];
DeleteCases[Table[Length[Select[qurt[n],SameQ[##,k]&@@Length/@Position[#,{}]&]],{n,10},{k,0,n-1}],0,{2}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
T(n)={my(u=vector(n), v=vector(n), h=1); u[1]=1; while(u, v+=u*h; h*=x; u=EulerT(u)-u); v[1]=x; [Vecrev(p/x) | p<-v]}
{ my(A=T(15)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 09 2020
A320266
Number of balanced orderless tree-factorizations of n.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 6, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 3, 4, 1, 5, 1, 9, 2, 2, 2, 11, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 17, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 13, 1, 2, 4, 19, 2, 5, 1, 4, 2, 5, 1, 24, 1, 2, 4, 4, 2, 5, 1, 17, 6, 2, 1, 13, 2
Offset: 1
The a(36) = 11 balanced orderless tree-factorizations:
36,
(2*18), (3*12), (4*9), (6*6),
(2*2*9), (2*3*6), (3*3*4),
(2*2*3*3), ((2*2)*(3*3)), ((2*3)*(2*3)).
Cf.
A000669,
A001055,
A048816,
A050336,
A281118,
A292505,
A119262,
A120803,
A141268,
A292504,
A319312,
A320160,
A320267.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
oltfacs[n_]:=If[n<=1,{{}},Prepend[Union@@Function[q,Sort/@Tuples[oltfacs/@q]]/@DeleteCases[facs[n],{n}],n]];
Table[Length[Select[oltfacs[n],SameQ@@Length/@Position[#,_Integer]&]],{n,100}]
-
MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
seq(n)={my(u=vector(n, i, 1), v=vector(n)); while(u, v+=u; u[1]=1; u=MultEulerT(u)-u); v} \\ Andrew Howroyd, Nov 18 2018
A320267
Number of balanced complete orderless tree-factorizations of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1
Offset: 1
The a(96) = 5 balanced complete orderless tree-factorizations:
(2*2*2*2*2*3)
((2*2)*(2*2*2*3))
((2*3)*(2*2*2*2))
((2*2*2)*(2*2*3))
((2*2)*(2*2)*(2*3))
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
oltfacs[n_]:=If[n<=1,{{}},Prepend[Union@@Function[q,Sort/@Tuples[oltfacs/@q]]/@DeleteCases[facs[n],{n}],n]];
Table[Length[Select[oltfacs[n],And[SameQ@@Length/@Position[#,_Integer],FreeQ[#,_Integer?(!PrimeQ[#]&)]]&]],{n,100}]
-
MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
seq(n)={my(u=vector(n, i, i==1 || isprime(i)), v=vector(n)); while(u, v+=u; u[1]=1; u=MultEulerT(u)-u); v} \\ Andrew Howroyd, Nov 18 2018
A131909
Triangle, read by rows, where T(n,k) = T(n-1,k-2) + T(n-1,k-1) for n>=k>1, with T(0,0)=1 and T(n,0) = T(n+1,1) = T(n-1,n-1) for n>0.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 3, 3, 5, 5, 3, 5, 5, 6, 8, 8, 5, 8, 8, 10, 11, 14, 14, 8, 13, 13, 16, 18, 21, 25, 25, 14, 22, 21, 26, 29, 34, 39, 46, 46, 25, 39, 36, 43, 47, 55, 63, 73, 85, 85, 46, 71, 64, 75, 79, 90, 102, 118, 136, 158, 158, 85, 131, 117, 135, 139, 154, 169
Offset: 0
Triangle begins:
1;
1, 1;
1, 1, 2;
2, 1, 2, 3;
3, 2, 3, 3, 5;
5, 3, 5, 5, 6, 8;
8, 5, 8, 8, 10, 11, 14;
14, 8, 13, 13, 16, 18, 21, 25;
25, 14, 22, 21, 26, 29, 34, 39, 46;
46, 25, 39, 36, 43, 47, 55, 63, 73, 85;
85, 46, 71, 64, 75, 79, 90, 102, 118, 136, 158;
158, 85, 131, 117, 135, 139, 154, 169, 192, 220, 254, 294; ...
Illustrate T(n,k) = T(n-1,k-2) + T(n-1,k-1):
T(5,3) = T(4,1) + T(4,2) = 2 + 3 = 5;
T(6,4) = T(5,2) + T(5,3) = 5 + 5 = 10;
T(8,3) = T(7,1) + T(7,2) = 8 +13 = 21.
Cf.
A119262 (columns 0, 1 and main diagonal);
A131910 (central terms).
A352042
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-2*k-1,k) * a(k).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 61, 93, 144, 226, 359, 574, 920, 1475, 2361, 3769, 6000, 9528, 15100, 23897, 37789, 59739, 94446, 149365, 236322, 374073, 592357, 938311, 1486625, 2355620, 3732704, 5914682, 9371599, 14847866, 23522460, 37262742, 59026662
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 2 k - 1, k] a[k], {k, 0, Floor[(n - 1)/3]}]; Table[a[n], {n, 0, 43}]
nmax = 43; A[] = 0; Do[A[x] = 1 + x A[x^3/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A352043
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-3*k-1,k) * a(k).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250, 346, 482, 678, 963, 1380, 1994, 2903, 4252, 6254, 9222, 13616, 20109, 29681, 43755, 64394, 94583, 138632, 202755, 295906, 430986, 626585, 909500, 1318384, 1909042, 2762122, 3994290
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 3 k - 1, k] a[k], {k, 0, Floor[(n - 1)/4]}]; Table[a[n], {n, 0, 46}]
nmax = 46; A[] = 0; Do[A[x] = 1 + x A[x^4/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Comments