cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A199919 Number of distinct sums of distinct divisors of n when positive and negative divisors are allowed.

Original entry on oeis.org

3, 7, 9, 15, 9, 25, 9, 31, 27, 37, 9, 57, 9, 49, 49, 63, 9, 79, 9, 85, 65, 49, 9, 121, 27, 49, 81, 113, 9, 145, 9, 127, 81, 49, 69, 183, 9, 49, 81, 181, 9, 193, 9, 169, 157, 49, 9, 249, 27, 187, 81, 197, 9, 241, 69, 241, 81, 49, 9, 337, 9, 49, 209, 255, 81, 289
Offset: 1

Views

Author

Michel Marcus, Dec 22 2012

Keywords

Examples

			a(2)=7 because the signed divisors of 2 are -2, -1, 1 and 2 and their all possible sums are -1, -2, -3, 0, 1, 2, 3.
a(3)=9 because the signed divisors of 3 are -3, -1, 1 and 3 and their all possible sums are -1, -2, -3, -4, 0, 1, 2, 3, 4.
		

Crossrefs

Programs

  • Mathematica
    dsdd[n_]:=Module[{divs=Divisors[n]},Length[Union[Total/@Subsets[ Join[ divs,-divs],2Length[divs]]]]]; Array[dsdd,70] (* Harvey P. Dale, Jan 19 2015 *)
  • PARI
    A199919(n) = { my(ds=concat(apply(x -> -x,divisors(n)),divisors(n)),m=Map(),s,u=0); for(i=0,(2^#ds)-1,s = sumbybits(ds,i); if(!mapisdefined(m,s), mapput(m,s,s); u++)); (u); }; \\ Slow!
    sumbybits(v,b) = { my(s=0,i=1); while(b>0,s += (b%2)*v[i]; i++; b >>= 1); (s); }; \\ Antti Karttunen, May 19 2021
    
  • PARI
    See PARI-link \\ David A. Corneth, May 20 2021

Formula

a(A005153(n)) = 2*sigma(A005153(n)) + 1. - David A. Corneth, May 19 2021
a(p) = 9 for odd primes p. - Antti Karttunen, May 19 2021

A342401 Numbers k such that the number of distinct sums of distinct unitary divisors of k sets a new record.

Original entry on oeis.org

1, 2, 6, 10, 30, 42, 60, 66, 78, 90, 110, 130, 170, 190, 210, 330, 390, 462, 510, 546, 570, 690, 798, 858, 870, 930, 1050, 1110, 1218, 1230, 1290, 1410, 1470, 1554, 1590, 1722, 1770, 1830, 1974, 2010, 2130, 2190, 2310, 2730, 3570, 3990, 4290, 4830, 5610, 6006
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2021

Keywords

Comments

The corresponding record values are 1, 3, 12, 15, 72, 96, 108, 144, 168, 172, 183, 207, 231, 255, 576, 864, ... (see the link for more values).
The analogous sequence of records with all the divisors (A119347) is conjecturally the highly abundant numbers (A002093), excluding 3 and 10.

Examples

			The first 6 terms of A342400 are 1, 3, 3, 3, 3 and 12. The record values, 1, 3 and 12, occur are 1, 2 and 6, the first 3 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{d = Select[Divisors[n], CoprimeQ[#, n/#] &], x, s, m, c}, m = Length[d]; s = Plus @@ d; c = Rest @ CoefficientList[Series[Product[1 + x^d[[i]], {i, 1, m}], {x, 0, s}], x]; Count[c, _?(# > 0 &)]]; fmax = -1; seq = {}; Do[f1 = f[n]; If[f1 > fmax, fmax = f1; AppendTo[seq, n]], {n, 1, 10^3}]; seq

A385904 a(n) is the number of nonempty subsets of the divisors of n that sum to a perfect square.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 1, 3, 3, 2, 1, 11, 1, 3, 4, 5, 1, 9, 1, 9, 3, 3, 1, 27, 2, 2, 4, 8, 1, 27, 1, 7, 3, 2, 2, 49, 1, 1, 3, 22, 1, 21, 1, 7, 8, 3, 1, 77, 2, 5, 2, 4, 1, 22, 2, 21, 2, 1, 1, 248, 1, 2, 7, 11, 1, 21, 1, 4, 2, 17, 1, 235, 1, 1, 9, 7, 1, 20, 1, 64, 6, 1
Offset: 1

Views

Author

Felix Huber, Jul 21 2025

Keywords

Examples

			a(6) = 4 because exactly the 4 nonempty subsets {1}, {1, 3}, {1, 2, 6} and {3, 6} of the divisors of 6 sum to a perfect square: 1 = 1^2, 1 + 3 = 2^2, 1 + 2 + 6 = 3^2.
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A385904:=proc(n)
        local b,l,j;
        l:=[(Divisors(n))[]]:
        b:=proc(m,i)
            option remember;
            `if`(m=0,1,`if`(i<1,0,b(m,i-1)+`if`(l[i]>m,0,b(m-l[i],i-1))))
    	end;
        add(b(j^2,nops(l)),j=1..floor(sqrt(sigma(n))));
    end:
    seq(A385904(n),n=1..82);
  • Mathematica
    a[n_]:=Module[{nb = 0, d = Divisors[n]},Length[Select[Subsets[d],IntegerQ[Sqrt[Total[#]]]&]]]-1;Array[a,82] (* James C. McMahon, Jul 27 2025 *)
  • PARI
    a(n) = my(nb=0, d=divisors(n)); forsubset(#d, s, nb+=issquare(sum(i=1, #s, d[s[i]]))); nb-1; \\ Michel Marcus, Jul 22 2025

Formula

a(p) = 1 for primes p != 3.

A307222 Deficient numbers k at least one of whose divisors is the sum of other distinct divisors of k.

Original entry on oeis.org

45, 63, 99, 105, 110, 117, 130, 135, 154, 165, 170, 182, 189, 195, 225, 231, 238, 255, 266, 273, 285, 286, 297, 315, 322, 345, 351, 357, 374, 385, 399, 405, 418, 429, 441, 455, 459, 475, 483, 494, 495, 506, 513, 525, 561, 567, 585, 595, 598, 609, 621, 627, 646
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2019

Keywords

Comments

Erdős used the term "integers with the property P" for numbers k such that all the 2^d(k) sums formed from the d(k) divisors of k are distinct and proved that they are all deficient numbers and have a positive density. This sequence lists deficient numbers not having this property.
Differs from A051773 from n >= 12.

Examples

			45 is in this sequence since its divisors are 1, 3, 5, 9, 15, 45 whose sum is 78 < 90, and thus it is deficient, yet the divisor 15 is the sum of other divisors of 45: 1 + 5 + 9.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; seqQ[n_] := DivisorSigma[1, n] < 2n && Max[T[n, #] & /@ Range[DivisorSigma[1, n]]] > 1; Select[Range[1000], seqQ]
Previous Showing 21-24 of 24 results.