A120602
G.f. satisfies: 31*A(x) = 30 + 125*x + A(x)^6, starting with [1,5,15].
Original entry on oeis.org
1, 5, 15, 190, 2550, 38070, 609205, 10199640, 176483340, 3130904150, 56641633455, 1040985874470, 19381240377460, 364777461207360, 6929053224018750, 132665646902812800, 2557591625106894075, 49604907701733017850
Offset: 0
A(x) = 1 + 5*x + 15*x^2 + 190*x^3 + 2550*x^4 + 38070*x^5 +...
A(x)^6 = 1 + 30*x + 465*x^2 + 5890*x^3 + 79050*x^4 + 1180170*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+31*x - (1+x)^6)/125, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
-
{a(n)=local(A=1+5*x+15*x^2+x*O(x^n));for(i=0,n,A=A+(-31*A+30+125*x+A^6)/25);polcoeff(A,n)}
A120603
G.f. satisfies: 16*A(x) = 15 + 27*x + A(x)^7, starting with [1,3,21].
Original entry on oeis.org
1, 3, 21, 399, 9135, 233709, 6400947, 183585897, 5443737390, 165536020650, 5133935821014, 161768728483362, 5164132704296202, 166660621950110526, 5428573285691233650, 178234125351736454070, 5892439158797172244515
Offset: 0
A(x) = 1 + 3*x + 21*x^2 + 399*x^3 + 9135*x^4 + 233709*x^5 +...
A(x)^7 = 1 + 21*x + 336*x^2 + 6384*x^3 + 146160*x^4 + 3739344*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+16*x - (1+x)^7)/27, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
-
{a(n)=local(A=1+3*x+21*x^2+x*O(x^n));for(i=0,n,A=A+(-16*A+15+27*x+A^7)/9);polcoeff(A,n)}
A120604
G.f. satisfies: 24*A(x) = 23 + 64*x + A(x)^8, starting with [1,4,28].
Original entry on oeis.org
1, 4, 28, 616, 15820, 453208, 13894552, 445970128, 14796844588, 503423385080, 17467725995720, 615756709476272, 21990183407958584, 793912445913712496, 28928560840589374640, 1062498482335560005024, 39293868860176487815916
Offset: 0
A(x) = 1 + 4*x + 28*x^2 + 616*x^3 + 15820*x^4 + 453208*x^5 +...
A(x)^8 = 1 + 32*x + 672*x^2 + 14784*x^3 + 379680*x^4 + 10876992*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+24*x - (1+x)^8)/64, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
-
{a(n)=local(A=1+4*x+28*x^2+x*O(x^n));for(i=0,n,A=A+(-24*A+23+64*x+A^8)/16);polcoeff(A,n)}
A120605
G.f. satisfies: 25*A(x) = 24 + 64*x + A(x)^9, starting with [1,4,36].
Original entry on oeis.org
1, 4, 36, 984, 31716, 1140552, 43895208, 1768717872, 73674176868, 3146885203432, 137085166193976, 6066992348458704, 272023207778276136, 12330039492509279184, 564072488005316830416, 26010805156782400648800
Offset: 0
A(x) = 1 + 4*x + 36*x^2 + 984*x^3 + 31716*x^4 + 1140552*x^5 +...
A(x)^9 = 1 + 36*x + 900*x^2 + 24600*x^3 + 792900*x^4 + 28513800*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+25*x - (1+x)^9)/64, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
-
{a(n)=local(A=1+4*x+36*x^2+x*O(x^n));for(i=0,n,A=A+(-25*A+24+64*x+A^9)/16);polcoeff(A,n)}
A120606
G.f. satisfies: 36*A(x) = 35 + 81*x + A(x)^9, starting with [1,3,12].
Original entry on oeis.org
1, 3, 12, 180, 3018, 56238, 1121484, 23406804, 504914175, 11167352013, 251879507880, 5771456609880, 133970974830420, 3143760834627420, 74454455230816008, 1777349666975945784, 42721359085344132657
Offset: 0
A(x) = 1 + 3*x + 12*x^2 + 180*x^3 + 3018*x^4 + 56238*x^5 +...
A(x)^9 = 1 + 27*x + 432*x^2 + 6480*x^3 + 108648*x^4 + 2024568*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+36*x - (1+x)^9)/81, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
-
{a(n)=local(A=1+3*x+12*x^2+x*O(x^n));for(i=0,n,A=A+(-36*A+35+81*x+A^9)/27);polcoeff(A,n)}
A356115
Triangle read by rows. The reduced triangle of the partition triangle of reducible permutations with weakly decreasing Lehmer code (A356266). T(n, k) for n >= 1 and 0 <= k < n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 4, 6, 3, 1, 0, 9, 20, 6, 6, 1, 0, 11, 45, 50, 15, 10, 1, 0, 19, 93, 185, 80, 36, 15, 1, 0, 22, 196, 462, 490, 161, 77, 21, 1, 0, 33, 312, 1120, 1834, 1050, 336, 148, 28, 1
Offset: 1
[ 1] [1]
[ 2] [0, 1]
[ 3] [0, 1, 1]
[ 4] [0, 3, 1, 1]
[ 5] [0, 4, 6, 3, 1]
[ 6] [0, 9, 20, 6, 6, 1]
[ 7] [0, 11, 45, 50, 15, 10, 1]
[ 8] [0, 19, 93, 185, 80, 36, 15, 1]
[ 9] [0, 22, 196, 462, 490, 161, 77, 21, 1]
[10] [0, 33, 312, 1120, 1834, 1050, 336, 148, 28, 1]
-
# uses function reduce_partition_triangle from A356265.
def A356115_row(n: int) -> list[int]:
return reduce_partition_triangle(A356266_row, n + 1)[n - 1]
def A356115(n: int, k: int) -> int:
return A356115_row(n)[k]
for n in range(1, 11):
print([n], A356115_row(n))
A356266
Partition triangle read by rows, counting reducible permutations with weakly decreasing Lehmer code, refining triangle A356115.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 3, 3, 1, 0, 1, 4, 4, 2, 6, 12, 2, 4, 6, 1, 0, 1, 5, 5, 5, 10, 20, 10, 10, 10, 30, 10, 5, 10, 1, 0, 1, 6, 6, 6, 3, 15, 30, 30, 15, 15, 20, 60, 30, 60, 5, 15, 60, 30, 6, 15, 1
Offset: 0
[0] 1;
[1] 1;
[2] 0, 1;
[3] 0, 1, 1;
[4] 0, [1, 2], 1, 1;
[5] 0, [1, 3], [3, 3], 3, 1;
[6] 0, [1, 4, 4], [2, 6, 12], [2, 4], 6, 1;
[7] 0, [1, 5, 5], [5, 10, 20, 10], [10, 10, 30], [10, 5], 10, 1;
[8] 0, [1, 6, 6, 6],[3,15, 30, 30, 15],[15, 20, 60, 30, 60],[5,15,60],[30,6],15,1;
Summing the bracketed terms reduces the triangle to A356115.
-
# uses functions perm_red_stats and reducible from A356264.
@cache
def A356266_row(n: int) -> list[int]:
if n < 2: return [1]
return [0] + [v[1] for v in perm_red_stats(n, reducible, weakly_decreasing)]
def A356266(n: int, k: int) -> int:
return A356266_row(n)[k]
for n in range(8):
print(A356266_row(n))
A378145
Riordan triangle (1 + x * C(x), x * C(x)), where C(x) is g.f. of A000108.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 5, 10, 8, 4, 1, 14, 28, 23, 13, 5, 1, 42, 84, 70, 42, 19, 6, 1, 132, 264, 222, 138, 68, 26, 7, 1, 429, 858, 726, 462, 240, 102, 34, 8, 1, 1430, 2860, 2431, 1573, 847, 385, 145, 43, 9, 1, 4862, 9724, 8294, 5434, 3003, 1430, 583, 198, 53, 10, 1
Offset: 0
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
======================================================
0 : 1
1 : 1 1
2 : 1 2 1
3 : 2 4 3 1
4 : 5 10 8 4 1
5 : 14 28 23 13 5 1
6 : 42 84 70 42 19 6 1
7 : 132 264 222 138 68 26 7 1
8 : 429 858 726 462 240 102 34 8 1
9 : 1430 2860 2431 1573 847 385 145 43 9 1
etc.
-
T(n,k)=if(k==n,1,binomial(2*n-k,n)*(n*(3*k+1)-2*k*(k+1))/((2*n-k)*(2*n-k-1)))
Comments