A377050
Position of first appearance of zero in the n-th differences of the nonsquarefree numbers, or 0 if it does not appear.
Original entry on oeis.org
0, 0, 5, 11, 4, 129, 10, 89, 16, 161, 72, 77325, 71, 4870, 70, 253, 75, 737923, 166, 1648316, 165, 8753803, 164, 208366710, 163, 99489971, 162, 49493333, 161
Offset: 0
The fourth differences of A013929 begin: -6, -2, 5, 0, -7, 9, -6, 6, -7, ... so a(4) = 4.
For squarefree instead of nonsquarefree numbers we have
A377042.
For leading column we have
A377049.
A005117 lists the squarefree numbers.
A073576 counts integer partitions into squarefree numbers, factorizations
A050320.
Cf.
A000961,
A007674,
A053797,
A053806,
A061398,
A072284,
A084758,
A112925,
A120992,
A376311,
A376591,
A377051.
-
nn=10000;
u=Table[Differences[Select[Range[nn],!SquareFreeQ[#]&],k],{k,2,16}];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]
A373128
Least k such that the k-th maximal antirun of squarefree numbers has length n. Position of first appearance of n in A373127.
Original entry on oeis.org
1, 3, 10, 8, 19, 162, 1853, 2052, 1633, 26661, 46782, 3138650, 1080330
Offset: 1
The maximal antiruns of squarefree numbers begin:
1
2
3 5
6
7 10
11 13
14
15 17 19 21
22
23 26 29
30
31 33
34
35 37
The a(n)-th rows are:
1
3 5
23 26 29
15 17 19 21
47 51 53 55 57
483 485 487 489 491 493
For example, (23, 26, 29) is the first maximal antirun of 3 squarefree numbers, so a(3) = 10.
For composite instead of squarefree we have
A073051.
Positions of first appearances in
A373127.
Cf.
A006512,
A007674,
A049093,
A068781,
A072284,
A077641,
A120992,
A174965,
A251092,
A373198,
A373408,
A373411.
-
t=Length/@Split[Select[Range[10000],SquareFreeQ[#]&],#1+1!=#2&]//Most;
spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[Max@@#]&];
Table[Position[t,k][[1,1]],{k,spnm[t]}]
A376306
Run-lengths of the sequence of first differences of squarefree numbers.
Original entry on oeis.org
2, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1
Offset: 1
The sequence of squarefree numbers (A005117) is:
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with runs:
(1,1),(2),(1,1),(3),(1),(2),(1,1),(2,2,2),(1,1),(3,3),(1,1),(2),(1,1), ...
with lengths A376306 (this sequence).
Run-lengths of first differences of
A005117.
For prime instead of squarefree numbers we have
A333254.
For compression instead of run-lengths we have
A376305.
For run-sums instead of run-lengths we have
A376307.
For prime-powers instead of squarefree numbers we have
A376309.
For positions of first appearances instead of run-lengths we have
A376311.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A007674,
A053797,
A053806,
A061398,
A072284,
A112925,
A112926,
A120992,
A373198,
A375707,
A376312.
A376312
Run-compression of first differences (A078147) of nonsquarefree numbers (A013929).
Original entry on oeis.org
4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 4, 1, 3, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 2, 1, 3, 4, 2, 4, 1, 2, 1, 3, 1, 4, 1, 3, 4, 2, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 3, 2, 4, 1, 3, 4, 2, 3, 1, 3, 1, 4, 1, 3, 2, 1, 3, 4, 2
Offset: 1
The sequence of nonsquarefree numbers (A013929) is:
4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
(4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
and run-compression (A376312):
4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, ...
For nonprime instead of squarefree numbers we have
A037201, halved
A373947.
For run-sums instead of compression we have
A376264.
For squarefree instead of nonsquarefree we have
A376305, ones
A376342.
For prime-powers instead of nonsquarefree numbers we have
A376308.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A007674,
A053797,
A053806,
A072284,
A112925,
A120992,
A274174,
A373198,
A375707,
A376306,
A376307,
A376311.
A375736
Length of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.
Original entry on oeis.org
1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
The initial anti-runs are the following, whose lengths are a(n):
(2)
(3,5)
(6)
(7,10)
(11)
(12)
(13)
(14)
(15,17)
(18)
(19)
(20)
(21)
(22)
(23)
(24,26,28)
For runs instead of anti-runs we have
A375702.
For anti-runs of non-perfect-powers:
For runs of non-perfect-powers:
A376307
Run-sums of the sequence of first differences of squarefree numbers.
Original entry on oeis.org
2, 2, 2, 3, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 1, 4, 6, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 6, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 1, 3, 1, 4, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 6, 2, 6, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 6, 2, 2, 1, 3
Offset: 1
The sequence of squarefree numbers (A005117) is:
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with runs:
(1,1),(2),(1,1),(3),(1),(2),(1,1),(2,2,2),(1,1),(3,3),(1,1),(2),(1,1), ...
with sums A376307 (this sequence).
Run-sums of first differences of
A005117.
For the squarefree numbers themselves we have
A373413.
For prime instead of squarefree numbers we have
A373822, halved
A373823.
For run-lengths instead of run-sums we have
A376306.
For prime-powers instead of squarefree numbers we have
A376310.
For positions of first appearances instead of run-sums we have
A376311.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A007674,
A053797,
A053806,
A061398,
A072284,
A112925,
A112926,
A120992,
A373197,
A373198,
A375707.
A377040
Antidiagonal-sums of absolute value of the array A377038(n,k) = n-th term of k-th differences of squarefree numbers (A005117).
Original entry on oeis.org
1, 3, 4, 9, 13, 18, 28, 39, 106, 267, 595, 1212, 2286, 4041, 6720, 10497, 15387, 20914, 25894, 29377, 37980, 70785, 175737, 343806, 579751, 861934, 1162080, 1431880, 1688435, 2589533, 8731932, 23911101, 58109574, 130912573, 276067892, 543833014, 992784443
Offset: 0
The fourth antidiagonal of A377038 is (6, 1, -1, -2, -3), so a(4) = 13.
These are the antidiagonal-sums of the absolute value of
A377038.
The non-absolute version is
A377039.
A073576 counts integer partitions into squarefree numbers, factorizations
A050320.
Cf.
A007674,
A053797,
A053806,
A061398,
A072284,
A075526,
A076259,
A120992,
A140119,
A376311,
A376590,
A376591,
A377046.
-
nn=20;
t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
Total/@Table[Abs[t[[j,i-j+1]]],{i,nn},{j,i}]
A378082
Terms appearing only once in A377783 = least nonsquarefree number > prime(n).
Original entry on oeis.org
12, 16, 18, 20, 24, 40, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 108, 112, 116, 128, 132, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 294, 308, 312, 315, 320, 332, 338, 348
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
60: {1,1,2,3}
63: {2,2,4}
68: {1,1,7}
72: {1,1,1,2,2}
75: {2,3,3}
80: {1,1,1,1,3}
84: {1,1,2,4}
90: {1,2,2,3}
98: {1,4,4}
108: {1,1,2,2,2}
112: {1,1,1,1,4}
116: {1,1,10}
128: {1,1,1,1,1,1,1}
132: {1,1,2,5}
Terms not appearing at all are
A378084.
A005117 lists the squarefree numbers.
A070321 gives the greatest squarefree number up to n.
A378086(n) =
A057627(prime(n)) counts nonsquarefree numbers < prime(n).
-
q:= 3: R:= NULL: flag:= false: count:= 0:
while count < 100 do
p:= q; q:= nextprime(q);
for k from p+1 to q-1 do
found:= false;
if not numtheory:-issqrfree(k) then
if flag then
count:= count+1; R:= R,k
fi;
found:= true; break
fi;
od;
flag:= found;
od:
R; # Robert Israel, Nov 20 2024
-
y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}];
Select[Most[Union[y]],Count[y,#]==1&]
A373669
Least k such that the k-th maximal run of non-prime-powers has length n. Position of first appearance of n in A110969, and the sequence ends if there is none.
Original entry on oeis.org
1, 5, 7, 12, 18, 190, 28, 109, 40, 28195574, 53
Offset: 1
The maximal runs of non-prime-powers begin:
1
6
10
12
14 15
18
20 21 22
24
26
28
30
33 34 35 36
38 39 40
42
44 45 46
48
50 51 52
54 55 56 57 58
60
For squarefree runs we have firsts of
A120992.
For prime-powers runs we have firsts of
A174965.
For antiruns we have firsts of
A373672.
For runs of non-prime-powers:
A000961 lists the powers of primes (including 1).
A057820 gives first differences of consecutive prime-powers, gaps
A093555.
Cf.
A007053,
A008864,
A014963,
A027833,
A038664,
A054265,
A067774,
A356068,
A373401,
A373403,
A373671.
-
q=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&]//Most;
spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#1]]&];
Table[Position[q,k][[1,1]],{k,spna[q]}]
A373413
Sum of the n-th maximal run of squarefree numbers.
Original entry on oeis.org
6, 18, 21, 42, 17, 19, 66, 26, 90, 102, 114, 126, 93, 51, 53, 55, 174, 123, 198, 210, 147, 234, 165, 258, 89, 91, 282, 97, 306, 318, 330, 342, 237, 245, 127, 390, 267, 414, 426, 291, 149, 151, 309, 474, 161, 163, 498, 170, 347, 534, 546, 558, 381, 582, 197
Offset: 1
Row-sums of:
1 2 3
5 6 7
10 11
13 14 15
17
19
21 22 23
26
29 30 31
33 34 35
37 38 39
41 42 43
46 47
51
53
55
57 58 59
The partial sums are a subset of
A173143.
Cf.
A049093,
A049095,
A061398,
A077641,
A077643,
A143658,
A371201,
A373123,
A373125,
A373126,
A373197.
Comments