cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A053797 Lengths of successive gaps between squarefree numbers.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 2, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2000

Keywords

Comments

From Gus Wiseman, Jun 11 2024: (Start)
Also the length of the n-th maximal run of nonsquarefree numbers. These runs begin:
4
8 9
12
16
18
20
24 25
27 28
32
36
40
44 45
48 49 50
(End)

Examples

			The first gap is at 4 and has length 1; the next starts at 8 and has length 2 (since neither 8 nor 9 are squarefree).
		

Crossrefs

Gaps between terms of A005117.
For squarefree runs we have A120992, antiruns A373127 (firsts A373128).
For composite runs we have A176246 (rest of A046933), antiruns A373403.
For prime runs we have A251092 (rest of A175632), antiruns A027833.
Position of first appearance of n is A373199(n).
For antiruns instead of runs we have A373409.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Maple
    SF:= select(numtheory:-issqrfree,[$1..1000]):
    map(`-`,select(`>`,SF[2..-1]-SF[1..-2],1),1); # Robert Israel, Sep 22 2015
  • Mathematica
    ReplaceAll[Differences[Select[Range@384, SquareFreeQ]] - 1, 0 -> Nothing] (* Michael De Vlieger, Sep 22 2015 *)

Extensions

Offset set to 1 by Peter Kagey, Sep 29 2015

A027833 Distances between successive 2's in sequence A001223 of differences between consecutive primes.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, 4, 3, 5, 3, 4, 5, 12, 2, 6, 9, 6, 5, 4, 3, 4, 20, 2, 2, 4, 4, 19, 2, 3, 2, 4, 8, 11, 5, 3, 3, 3, 10, 5, 4, 2, 17, 3, 6, 3, 3, 9, 9, 2, 6, 2, 6, 5, 6, 2, 3, 2, 3, 9, 4, 7, 3, 7, 20, 4, 7, 6, 5, 3, 7, 3, 20, 2, 14, 4, 10, 2, 3, 6, 4, 2, 2, 7, 2, 6, 3
Offset: 1

Views

Author

Jean-Marc MALASOMA (Malasoma(AT)entpe.fr)

Keywords

Comments

a(n) = number of primes p such that A014574(n) < p < A014574(n+1). - Thomas Ordowski, Jul 20 2012
Conjecture: a(n) < log(A014574(n))^2. - Thomas Ordowski, Jul 21 2012
Conjecture: All positive integers are represented in this sequence. This is verified up to 184, by searching up to prime indexes of ~128000000. The rate of filling-in the smallest remaining gap among the integers, and the growth in the maximum value found, both slow down considerably relative to a fixed quantity of twin prime incidences examined in each pass. The maximum value found was 237. - Richard R. Forberg, Jul 28 2016
All positive integers below 312 are in this sequence. - Charles R Greathouse IV, Aug 01 2016
From Gus Wiseman, Jun 11 2024: (Start)
Also the length of the n-th maximal antirun of prime numbers > 3, where an antirun is an interval of positions at which consecutive terms differ by more than 2. These begin:
5
7 11
13 17
19 23 29
31 37 41
43 47 53 59
61 67 71
73 79 83 89 97 101
(End)

Crossrefs

First differences of A029707 and A155752 = A029707 - 1. M. F. Hasler, Jul 24 2012
Positions of first appearances are A373401, sorted A373402.
Functional neighbors: A001359, A006512, A251092 or A175632, A373127 (firsts A373128, sorted A373200), A373403, A373405, A373409.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Maple
    A027833 := proc(n)
        local plow,phigh ;
        phigh := A001359(n+1) ;
        plow := A001359(n) ;
        numtheory[pi](phigh)-numtheory[pi](plow) ;
    end proc:
    seq(A027833(n),n=1..100) ; # R. J. Mathar, Jan 20 2025
  • Mathematica
    Differences[Flatten[Position[Differences[Prime[Range[500]]],2]]] (* Harvey P. Dale, Nov 17 2018 *)
    Length/@Split[Select[Range[4,10000],PrimeQ[#]&],#1+2!=#2&]//Most (* Gus Wiseman, Jun 11 2024 *)
  • PARI
    n=1; p=5; forprime(q=7,1e3, if(q-p==2, print1(n", "); n=1, n++); p=q) \\ Charles R Greathouse IV, Aug 01 2016
  • Sage
    def A027833(n) :
       a = [ ]
       st = 2
       for i in (3..n) :
          if (nth_prime(i+1)-nth_prime(i) == 2) :
             a.append(i-st)
             st = i
       return(a)
    A027833(496) # Jani Melik, May 15 2014
    

A373127 Length of the n-th maximal antirun of squarefree numbers differing by more than one.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 5, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 1, 2, 4, 2, 1, 4, 1, 3, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 1, 3, 4, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The sum of this antirun is given by A373411.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row-lengths of:
   1
   2
   3  5
   6
   7 10
  11 13
  14
  15 17 19 21
  22
  23 26 29
  30
  31 33
  34
  35 37
  38
  39 41
  42
  43 46
  47 51 53 55 57
		

Crossrefs

Positions of first appearances are A373128, sorted A373200.
Functional neighbors: A007674, A027833 (partial sums A029707), A120992, A373403, A373408, A373409, A373411.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A077643 counts squarefree numbers with n bits, sum A373123.

Programs

  • Mathematica
    Length/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]

A373671 Length of the n-th maximal antirun of prime-powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 7, 26, 27, 1007, 5558, 5734, 31209
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

An antirun of a sequence (in this case A000961 without 1) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of prime-powers begin:
   2
   3
   4
   5   7
   8
   9  11  13  16
  17  19  23  25  27  29  31
		

Crossrefs

For prime antiruns we have A027833.
For nonsquarefree runs we have A053797, firsts A373199.
For non-prime-powers runs we have A110969, firsts A373669, sorted A373670.
For squarefree runs we have A120992.
For prime-power runs we have A174965.
For prime runs we have A175632.
For composite runs we have A176246, firsts A073051, sorted A373400.
For squarefree antiruns we have A373127, firsts A373128.
For composite antiruns we have A373403.
For antiruns of prime-powers:
- length A373671 (this sequence)
- min A120430
- max A006549
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
A000961 lists the powers of primes (including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists the non-prime-powers (not including 1 A024619).

Programs

  • Mathematica
    Length/@Split[Select[Range[100],PrimePowerQ[#]&],#1+1!=#2&]//Most

Formula

Partial sums are A025528(A006549(n)).

A373672 Length of the n-th maximal antirun of non-prime-powers.

Original entry on oeis.org

5, 3, 1, 6, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

An antirun of a sequence (in this case A361102 or A024619 with 1) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of non-prime-powers begin:
   1   6  10  12  14
  15  18  20
  21
  22  24  26  28  30  33
  34
  35
  36  38
  39
  40  42  44
  45
  46  48  50
		

Crossrefs

For prime antiruns we have A027833.
For nonsquarefree runs we have A053797, firsts A373199.
For non-prime-powers runs we have A110969, firsts A373669, sorted A373670.
For squarefree runs we have A120992.
For prime-power runs we have A174965.
For prime runs we have A175632.
For composite runs we have A176246, firsts A073051, sorted A373400.
For squarefree antiruns we have A373127, firsts A373128.
For composite antiruns we have A373403.
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
For antiruns of non-prime-powers:
- length A373672 (this sequence), firsts (3,7,2,25,1,4)
- min A373575
- max A255346
A000961 lists all powers of primes. A246655 lists just prime-powers.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Length/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1!=#2&]//Most

Formula

Partial sums are A356068(A255346(n)).

A373199 Least k such that the k-th maximal run of nonsquarefree numbers has length n. Position of first appearance of n in A053797.

Original entry on oeis.org

1, 2, 13, 68, 241, 6278, 61921, 311759, 2530539
Offset: 1

Views

Author

Gus Wiseman, Jun 08 2024

Keywords

Comments

A run of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by one. The a(n)-th run of nonsquarefree numbers begins with A045882 = A051681, subset of A053806.

Examples

			The maximal runs of nonsquarefree numbers begin:
   4
   8   9
  12
  16
  18
  20
  24  25
  27  28
  32
  36
  40
  44  45
  48  49  50
  52
  54
  56
  60
  63  64
The a(n)-th rows are:
     4
     8     9
    48    49    50
   242   243   244   245
   844   845   846   847   848
For example, (48, 49, 50) is the first maximal run of 3 nonsquarefree numbers, so a(3) = 13.
		

Crossrefs

For composite instead of nonsquarefree we have A073051.
The version for squarefree runs is A373128.
For prime instead of nonsquarefree we have A373400.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    seq=Length/@Split[Select[Range[10000],!SquareFreeQ[#]&],#1+1==#2&];
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#]]&];
    Table[Position[seq,i][[1,1]],{i,spna[seq]}]

A373400 Numbers k such that the k-th maximal run of composite numbers has length different from all prior maximal runs. Sorted positions of first appearances in A176246 (or A046933 shifted).

Original entry on oeis.org

1, 3, 8, 23, 29, 33, 45, 98, 153, 188, 216, 262, 281, 366, 428, 589, 737, 1182, 1830, 1878, 2190, 2224, 3076, 3301, 3384, 3426, 3643, 3792, 4521, 4611, 7969, 8027, 8687, 12541, 14356, 14861, 15782, 17005, 19025, 23282, 30801, 31544, 33607, 34201, 34214, 38589
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The unsorted version is A073051.
A run of a sequence (in this case A002808) is an interval of positions at which consecutive terms differ by one.

Examples

			The maximal runs of composite numbers begin:
   4
   6
   8   9  10
  12
  14  15  16
  18
  20  21  22
  24  25  26  27  28
  30
  32  33  34  35  36
  38  39  40
  42
  44  45  46
  48  49  50  51  52
  54  55  56  57  58
  60
  62  63  64  65  66
  68  69  70
  72
  74  75  76  77  78
  80  81  82
  84  85  86  87  88
  90  91  92  93  94  95  96
  98  99 100
The a(n)-th rows are:
   4
   8   9  10
  24  25  26  27  28
  90  91  92  93  94  95  96
 114 115 116 117 118 119 120 121 122 123 124 125 126
 140 141 142 143 144 145 146 147 148
 200 201 202 203 204 205 206 207 208 209 210
		

Crossrefs

The unsorted version is A073051, firsts of A176246.
For squarefree runs we have the triple (1,3,5), firsts of A120992.
For prime runs we have the triple (1,2,3), firsts of A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For prime antiruns we have A373402, unsorted A373401, firsts of A027833.
For composite runs we have the triple (1,2,7), firsts of A373403.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],CompositeQ],#1+1==#2&]//Most;
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373401 Least k such that the k-th maximal antirun of prime numbers > 3 has length n. Position of first appearance of n in A027833. The sequence ends if no such antirun exists.

Original entry on oeis.org

1, 2, 4, 6, 10, 8, 69, 40, 24, 46, 41, 21, 140, 82, 131, 210, 50, 199, 35, 30, 248, 192, 277, 185, 458, 1053, 251, 325, 271, 645, 748, 815, 811, 1629, 987, 826, 1967, 423, 1456, 2946, 1109, 406, 1870, 1590, 3681, 2920, 3564, 6423, 1426, 5953, 8345, 12687, 6846
Offset: 1

Views

Author

Gus Wiseman, Jun 09 2024

Keywords

Comments

The sorted version is A373402.
For this sequence, we define an antirun to be an interval of positions at which consecutive primes differ by at least 3.

Examples

			The maximal antiruns of prime numbers > 3 begin:
    5
    7  11
   13  17
   19  23  29
   31  37  41
   43  47  53  59
   61  67  71
   73  79  83  89  97 101
  103 107
  109 113 127 131 137
  139 149
  151 157 163 167 173 179
The a(n)-th rows are:
     5
     7   11
    19   23   29
    43   47   53   59
   109  113  127  131  137
    73   79   83   89   97  101
  2269 2273 2281 2287 2293 2297 2309
  1093 1097 1103 1109 1117 1123 1129 1151
   463  467  479  487  491  499  503  509  521
For example, (19, 23, 29) is the first maximal antirun of length 3, so a(3) = 4.
		

Crossrefs

For composite instead of prime we have A073051.
For runs instead of antiruns we have the triple (4,2,1), firsts of A251092.
For squarefree instead of prime we have A373128, firsts of A373127.
The sorted version is A373402.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[4,100000],PrimeQ],#1+2!=#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A373411 Sum of the n-th maximal antirun of squarefree numbers differing by more than one.

Original entry on oeis.org

1, 2, 8, 6, 17, 24, 14, 72, 22, 78, 30, 64, 34, 72, 38, 80, 42, 89, 263, 58, 120, 127, 66, 136, 70, 144, 151, 78, 161, 168, 86, 360, 94, 293, 102, 208, 106, 216, 110, 224, 114, 233, 241, 379, 130, 264, 271, 138, 280, 142, 288, 600, 312, 158, 648, 166, 510, 351
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this antirun is given by A373127.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row-sums of:
   1
   2
   3  5
   6
   7 10
  11 13
  14
  15 17 19 21
  22
  23 26 29
  30
  31 33
  34
  35 37
  38
  39 41
  42
  43 46
  47 51 53 55 57
		

Crossrefs

The partial sums are a subset of A173143.
Functional neighbors: A007674, A373127 (firsts A373128, sorted firsts A373200), A373404, A373405, A373408, A373412, A373413.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]//Most

A373669 Least k such that the k-th maximal run of non-prime-powers has length n. Position of first appearance of n in A110969, and the sequence ends if there is none.

Original entry on oeis.org

1, 5, 7, 12, 18, 190, 28, 109, 40, 28195574, 53
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

A run of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by one.
Are there only 9 terms?
From David A. Corneth, Jun 14 2024: (Start)
No. a(10) exists.
Between the prime 144115188075855859 and 144115188075855872 = 2^57 there are 12 non-prime-powers so a(12) exists. (End)

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

For composite runs we have A073051, sorted A373400, firsts of A176246.
For squarefree runs we have firsts of A120992.
For prime-powers runs we have firsts of A174965.
For prime runs we have firsts of A251092 or A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199, firsts of A053797.
The sorted version is A373670.
For antiruns we have firsts of A373672.
For runs of non-prime-powers:
- length A110969
- min A373676
- max A373677
- sum A373678
A000961 lists the powers of primes (including 1).
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    q=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#1]]&];
    Table[Position[q,k][[1,1]],{k,spna[q]}]
Showing 1-10 of 16 results. Next