cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A053797 Lengths of successive gaps between squarefree numbers.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 2, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2000

Keywords

Comments

From Gus Wiseman, Jun 11 2024: (Start)
Also the length of the n-th maximal run of nonsquarefree numbers. These runs begin:
4
8 9
12
16
18
20
24 25
27 28
32
36
40
44 45
48 49 50
(End)

Examples

			The first gap is at 4 and has length 1; the next starts at 8 and has length 2 (since neither 8 nor 9 are squarefree).
		

Crossrefs

Gaps between terms of A005117.
For squarefree runs we have A120992, antiruns A373127 (firsts A373128).
For composite runs we have A176246 (rest of A046933), antiruns A373403.
For prime runs we have A251092 (rest of A175632), antiruns A027833.
Position of first appearance of n is A373199(n).
For antiruns instead of runs we have A373409.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Maple
    SF:= select(numtheory:-issqrfree,[$1..1000]):
    map(`-`,select(`>`,SF[2..-1]-SF[1..-2],1),1); # Robert Israel, Sep 22 2015
  • Mathematica
    ReplaceAll[Differences[Select[Range@384, SquareFreeQ]] - 1, 0 -> Nothing] (* Michael De Vlieger, Sep 22 2015 *)

Extensions

Offset set to 1 by Peter Kagey, Sep 29 2015

A068781 Lesser of two consecutive numbers each divisible by a square.

Original entry on oeis.org

8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

Also numbers m such that mu(m)=mu(m+1)=0, where mu is the Moebius-function (A008683); A081221(a(n))>1. - Reinhard Zumkeller, Mar 10 2003
The sequence contains an infinite family of arithmetic progressions like {36a+8}={8,44,80,116,152,188,...} ={4(9a+2)}. {36a+9} provides 2nd nonsquarefree terms. Such AP's can be constructed to any term by solution of a system of linear Diophantine equation. - Labos Elemer, Nov 25 2002
1. 4k^2 + 4k is a member for all k; i.e., 8 times a triangular number is a member. 2. (4k+1) times an odd square - 1 is a member. 3. (4k+3) times odd square is a member. - Amarnath Murthy, Apr 24 2003
The asymptotic density of this sequence is 1 - 2/zeta(2) + Product_{p prime} (1 - 2/p^2) = 1 - 2 * A059956 + A065474 = 0.1067798952... (Matomäki et al., 2016). - Amiram Eldar, Feb 14 2021
Maximum of the n-th maximal anti-run of nonsquarefree numbers (A013929) differing by more than one. For runs instead of anti-runs we have A376164. For squarefree instead of nonsquarefree we have A007674. - Gus Wiseman, Sep 14 2024

Examples

			44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From _Gus Wiseman_, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
  (4,8)
  (9,12,16,18,20,24)
  (25,27)
  (28,32,36,40,44)
  (45,48)
  (49)
  (50,52,54,56,60,63)
  (64,68,72,75)
  (76,80)
  (81,84,88,90,92,96,98)
  (99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
		

Crossrefs

Subsequence of A261869.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.

Programs

  • Haskell
    a068781 n = a068781_list !! (n-1)
    a068781_list = filter ((== 0) . a261869) [1..]
    -- Reinhard Zumkeller, Sep 04 2015
    
  • Mathematica
    Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
    f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
    Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
  • PARI
    isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021

Formula

A261869(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2015

A373671 Length of the n-th maximal antirun of prime-powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 7, 26, 27, 1007, 5558, 5734, 31209
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

An antirun of a sequence (in this case A000961 without 1) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of prime-powers begin:
   2
   3
   4
   5   7
   8
   9  11  13  16
  17  19  23  25  27  29  31
		

Crossrefs

For prime antiruns we have A027833.
For nonsquarefree runs we have A053797, firsts A373199.
For non-prime-powers runs we have A110969, firsts A373669, sorted A373670.
For squarefree runs we have A120992.
For prime-power runs we have A174965.
For prime runs we have A175632.
For composite runs we have A176246, firsts A073051, sorted A373400.
For squarefree antiruns we have A373127, firsts A373128.
For composite antiruns we have A373403.
For antiruns of prime-powers:
- length A373671 (this sequence)
- min A120430
- max A006549
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
A000961 lists the powers of primes (including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists the non-prime-powers (not including 1 A024619).

Programs

  • Mathematica
    Length/@Split[Select[Range[100],PrimePowerQ[#]&],#1+1!=#2&]//Most

Formula

Partial sums are A025528(A006549(n)).

A373672 Length of the n-th maximal antirun of non-prime-powers.

Original entry on oeis.org

5, 3, 1, 6, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

An antirun of a sequence (in this case A361102 or A024619 with 1) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of non-prime-powers begin:
   1   6  10  12  14
  15  18  20
  21
  22  24  26  28  30  33
  34
  35
  36  38
  39
  40  42  44
  45
  46  48  50
		

Crossrefs

For prime antiruns we have A027833.
For nonsquarefree runs we have A053797, firsts A373199.
For non-prime-powers runs we have A110969, firsts A373669, sorted A373670.
For squarefree runs we have A120992.
For prime-power runs we have A174965.
For prime runs we have A175632.
For composite runs we have A176246, firsts A073051, sorted A373400.
For squarefree antiruns we have A373127, firsts A373128.
For composite antiruns we have A373403.
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
For antiruns of non-prime-powers:
- length A373672 (this sequence), firsts (3,7,2,25,1,4)
- min A373575
- max A255346
A000961 lists all powers of primes. A246655 lists just prime-powers.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Length/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1!=#2&]//Most

Formula

Partial sums are A356068(A255346(n)).

A073051 Least k such that Sum_{i=1..k} (prime(i) + prime(i+2) - 2*prime(i+1)) = 2n + 1.

Original entry on oeis.org

1, 3, 8, 23, 33, 45, 29, 281, 98, 153, 188, 262, 366, 428, 589, 737, 216, 1182, 3301, 2190, 1878, 1830, 7969, 3076, 3426, 2224, 3792, 8027, 4611, 4521, 3643, 8687, 14861, 12541, 15782, 3384, 34201, 19025, 17005, 44772, 23282, 38589, 14356
Offset: 1

Views

Author

Robert G. Wilson v, Aug 15 2002

Keywords

Comments

Also, least k such that 2n = A001223(k-1) = prime(k+1) - prime(k), where prime(k) = A001223(n). - Alexander Adamchuk, Jul 30 2006
Also the least number k>0 such that the k-th maximal run of composite numbers has length 2n-1. For example, the 8th such run (24,25,26,27,28) is the first of length 2(3)-1, so a(3) = 8. Also positions of first appearances in A176246 (A046933 without first term). - Gus Wiseman, Jun 12 2024

Examples

			a(3) = 8 because 1+0+2-2+2-2+2+2 = 5 and (5+1)/2 = 3.
		

Crossrefs

Position of first appearance of 2n+1 in A176246.
For nonsquarefree runs we have a bisection of A373199.
A000040 lists the primes, first differences A001223.
A002808 lists the composite numbers, differences A073783, sums A053767.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    NextPrim[n_Integer] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = Table[0, {50}]; s = 0; k = 1; p = 0; q = 2; r = 3; While[k < 10^6, p = q; q = r; r = NextPrim[q]; s = s + p + r - 2q; If[s < 101 && a[[(s + 1)/2]] == 0, a[[(s + 1)/2]] = k]; k++ ]; a
  • PARI
    a001223(n) = prime(n+1) - prime(n);
    a(n) = {my(k = 1); while(2*n != A001223(k+1), k++); k;} \\ Michel Marcus, Nov 20 2016

Formula

a(n) = A038664(n) - 1. - Filip Zaludek, Nov 19 2016

A375927 Numbers k such that A005117(k+1) - A005117(k) = 1. In other words, the k-th squarefree number is 1 less than the next.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 14, 15, 18, 19, 21, 22, 24, 25, 27, 28, 30, 35, 36, 38, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 58, 59, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, 79, 80, 82, 84, 85, 87, 88, 90, 94, 96, 97, 101, 102, 105, 107, 108, 110, 111, 113, 114, 116
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Comments

The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2-1)) = 0.53071182... (A065469). - Amiram Eldar, Sep 15 2024

Examples

			The squarefree numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ... which first increase by one after terms 1, 2, 4, 5, ...
		

Crossrefs

Positions of 1's in A076259.
For prime-powers (A246655) we have A375734.
First differences are A373127.
For nonsquarefree instead of squarefree we have A375709.
For nonprime numbers we have A375926, differences A373403.
For composite numbers we have A375929.
The complement is A375930, differences A120992.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],SquareFreeQ[#]&]],1]
  • PARI
    lista(kmax) = {my(is1 = 1, is2, c = 1); for(k = 2, kmax, is2 = issquarefree(k); if(is2, c++); if(is1 && is2, print1(c-1, ", ")); is1 = is2);} \\ Amiram Eldar, Sep 15 2024

A373400 Numbers k such that the k-th maximal run of composite numbers has length different from all prior maximal runs. Sorted positions of first appearances in A176246 (or A046933 shifted).

Original entry on oeis.org

1, 3, 8, 23, 29, 33, 45, 98, 153, 188, 216, 262, 281, 366, 428, 589, 737, 1182, 1830, 1878, 2190, 2224, 3076, 3301, 3384, 3426, 3643, 3792, 4521, 4611, 7969, 8027, 8687, 12541, 14356, 14861, 15782, 17005, 19025, 23282, 30801, 31544, 33607, 34201, 34214, 38589
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The unsorted version is A073051.
A run of a sequence (in this case A002808) is an interval of positions at which consecutive terms differ by one.

Examples

			The maximal runs of composite numbers begin:
   4
   6
   8   9  10
  12
  14  15  16
  18
  20  21  22
  24  25  26  27  28
  30
  32  33  34  35  36
  38  39  40
  42
  44  45  46
  48  49  50  51  52
  54  55  56  57  58
  60
  62  63  64  65  66
  68  69  70
  72
  74  75  76  77  78
  80  81  82
  84  85  86  87  88
  90  91  92  93  94  95  96
  98  99 100
The a(n)-th rows are:
   4
   8   9  10
  24  25  26  27  28
  90  91  92  93  94  95  96
 114 115 116 117 118 119 120 121 122 123 124 125 126
 140 141 142 143 144 145 146 147 148
 200 201 202 203 204 205 206 207 208 209 210
		

Crossrefs

The unsorted version is A073051, firsts of A176246.
For squarefree runs we have the triple (1,3,5), firsts of A120992.
For prime runs we have the triple (1,2,3), firsts of A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For prime antiruns we have A373402, unsorted A373401, firsts of A027833.
For composite runs we have the triple (1,2,7), firsts of A373403.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],CompositeQ],#1+1==#2&]//Most;
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373128 Least k such that the k-th maximal antirun of squarefree numbers has length n. Position of first appearance of n in A373127.

Original entry on oeis.org

1, 3, 10, 8, 19, 162, 1853, 2052, 1633, 26661, 46782, 3138650, 1080330
Offset: 1

Views

Author

Gus Wiseman, Jun 08 2024

Keywords

Comments

An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of squarefree numbers begin:
   1
   2
   3   5
   6
   7  10
  11  13
  14
  15  17  19  21
  22
  23  26  29
  30
  31  33
  34
  35  37
The a(n)-th rows are:
    1
    3    5
   23   26   29
   15   17   19   21
   47   51   53   55   57
  483  485  487  489  491  493
For example, (23, 26, 29) is the first maximal antirun of 3 squarefree numbers, so a(3) = 10.
		

Crossrefs

For composite instead of squarefree we have A073051.
Positions of first appearances in A373127.
The version for nonsquarefree runs is A373199, firsts of A053797.
For prime instead of squarefree we have A373401, firsts of A027833.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],SquareFreeQ[#]&],#1+1!=#2&]//Most;
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[Max@@#]&];
    Table[Position[t,k][[1,1]],{k,spnm[t]}]

A373401 Least k such that the k-th maximal antirun of prime numbers > 3 has length n. Position of first appearance of n in A027833. The sequence ends if no such antirun exists.

Original entry on oeis.org

1, 2, 4, 6, 10, 8, 69, 40, 24, 46, 41, 21, 140, 82, 131, 210, 50, 199, 35, 30, 248, 192, 277, 185, 458, 1053, 251, 325, 271, 645, 748, 815, 811, 1629, 987, 826, 1967, 423, 1456, 2946, 1109, 406, 1870, 1590, 3681, 2920, 3564, 6423, 1426, 5953, 8345, 12687, 6846
Offset: 1

Views

Author

Gus Wiseman, Jun 09 2024

Keywords

Comments

The sorted version is A373402.
For this sequence, we define an antirun to be an interval of positions at which consecutive primes differ by at least 3.

Examples

			The maximal antiruns of prime numbers > 3 begin:
    5
    7  11
   13  17
   19  23  29
   31  37  41
   43  47  53  59
   61  67  71
   73  79  83  89  97 101
  103 107
  109 113 127 131 137
  139 149
  151 157 163 167 173 179
The a(n)-th rows are:
     5
     7   11
    19   23   29
    43   47   53   59
   109  113  127  131  137
    73   79   83   89   97  101
  2269 2273 2281 2287 2293 2297 2309
  1093 1097 1103 1109 1117 1123 1129 1151
   463  467  479  487  491  499  503  509  521
For example, (19, 23, 29) is the first maximal antirun of length 3, so a(3) = 4.
		

Crossrefs

For composite instead of prime we have A073051.
For runs instead of antiruns we have the triple (4,2,1), firsts of A251092.
For squarefree instead of prime we have A373128, firsts of A373127.
The sorted version is A373402.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[4,100000],PrimeQ],#1+2!=#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A373669 Least k such that the k-th maximal run of non-prime-powers has length n. Position of first appearance of n in A110969, and the sequence ends if there is none.

Original entry on oeis.org

1, 5, 7, 12, 18, 190, 28, 109, 40, 28195574, 53
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

A run of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by one.
Are there only 9 terms?
From David A. Corneth, Jun 14 2024: (Start)
No. a(10) exists.
Between the prime 144115188075855859 and 144115188075855872 = 2^57 there are 12 non-prime-powers so a(12) exists. (End)

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

For composite runs we have A073051, sorted A373400, firsts of A176246.
For squarefree runs we have firsts of A120992.
For prime-powers runs we have firsts of A174965.
For prime runs we have firsts of A251092 or A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199, firsts of A053797.
The sorted version is A373670.
For antiruns we have firsts of A373672.
For runs of non-prime-powers:
- length A110969
- min A373676
- max A373677
- sum A373678
A000961 lists the powers of primes (including 1).
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    q=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#1]]&];
    Table[Position[q,k][[1,1]],{k,spna[q]}]
Showing 1-10 of 21 results. Next