cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A293878 Numbers having '18' as substring of their digits / decimal expansion.

Original entry on oeis.org

18, 118, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 218, 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1218, 1318, 1418, 1518, 1618, 1718, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1809, 1810, 1811, 1812
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 16 of A292690 and A293869. A121038 lists the terms which are divisible by 18.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "18"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293878 = has(n, p=18, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293879 Numbers having '19' as substring of their digits.

Original entry on oeis.org

19, 119, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 219, 319, 419, 519, 619, 719, 819, 919, 1019, 1119, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1219, 1319, 1419, 1519, 1619, 1719, 1819, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 19 of A292690 and A293869. A121039 lists the terms which are divisible by 19.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000],SequenceCount[IntegerDigits[#],{1,9}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 11 2019 *)
  • PARI
    is_A293879 = has(n, p=19, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293873 Numbers having '13' as substring of their digits.

Original entry on oeis.org

13, 113, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 213, 313, 413, 513, 613, 713, 813, 913, 1013, 1113, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1213, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 13 of A292690 and A293869. A121033 is the subsequence of multiples of 13.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[1350],SequenceCount[IntegerDigits[#],{1,3}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 31 2017 *)
  • PARI
    is_A293873 = has(n, p=13, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293880 Numbers having '20' as substring of their digits.

Original entry on oeis.org

20, 120, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 220, 320, 420, 520, 620, 720, 820, 920, 1020, 1120, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1220, 1320, 1420, 1520, 1620, 1720, 1820, 1920, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 20 of A292690 and A293869. A121040 lists the terms which are divisible by 19.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2100],SequenceCount[IntegerDigits[#],{2,0}]>0&] (* Harvey P. Dale, Jul 25 2021 *)
  • PARI
    is_A293880 = has(n, p=20, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A121042 Smallest divisor of n that is also contained in the decimal representation of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 23, 2, 5, 2, 27, 2, 29, 3, 1, 2, 3, 34, 5, 3, 37, 38, 3, 4, 1, 2, 43, 4, 5, 46, 47, 4, 49, 5, 1, 2, 53, 54, 5, 56, 57, 58, 59, 6, 1, 2, 3, 4, 5, 6, 67, 68, 69, 7, 1, 2, 73, 74, 5, 76, 7, 78, 79, 8, 1, 2, 83, 4, 5, 86, 87, 8, 89, 9, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2006

Keywords

Comments

1 <= a(n) <= n;
a(A011531(n)) = 1; a(n) = n iff A121041(n) = 1.
a(n) = 1 for almost all n (measure 1). - Charles R Greathouse IV, Mar 31 2016

Examples

			a(48) = Min{4, 8, 48} = 4;
a(49) = Min{49} = 49;
a(120) = Min{1, 2, 12, 20, 120} = 1;
a(121) = Min{1} = 1.
		

Crossrefs

Cf. A011531, A027750, A121041, A383749 (fixed points).

Programs

  • Mathematica
    A121042[n_] := SelectFirst[Divisors[n], StringContainsQ[IntegerString[n], IntegerString[#]] &];
    Array[A121042, 100] (* Paolo Xausa, May 12 2025 *)
  • PARI
    substr(a,b)=a=digits(a);b=digits(b); for(i=0,#a-#b, for(j=1,#b, if(a[i+j]!=b[j], next(2))); return(1)); 0
    a(n)=fordiv(n,d, if(substr(n,d), return(d))) \\ Charles R Greathouse IV, Mar 31 2016

A239058 Numbers whose divisors all appear as a substring in their decimal expansion.

Original entry on oeis.org

1, 11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 241, 251, 271, 281, 311, 313, 317, 331, 401, 419, 421, 431, 461, 491, 521, 541, 571, 601, 613, 617, 619, 631, 641, 661, 691, 701, 719, 751, 761, 811, 821, 881, 911, 919, 941, 971
Offset: 1

Views

Author

M. F. Hasler, Mar 09 2014

Keywords

Comments

A subsequence of A092911 (all divisors can be formed using the digits of the number) which is a subsequence of A011531 (numbers having the digit 1).
Are 1 and 125 the only nonprime terms in this sequence?
No: 17692313, 4482669527413081, 21465097175420089, and 567533481816008761 are members. - Charles R Greathouse IV, Mar 09 2014
See A239060 for the nonprime terms of this sequence, which include in particular the squares of terms of A115738 (unless such a square would not have a digit 1).

Examples

			All primes having the digit 1 (A208270) are in this sequence, because {1, p} are the only divisors of a prime p.
The divisors of 125 are {1, 5, 25, 125}; it can be seen that all of them occur as a substring in 125, therefore 125 is in this sequence.
		

Crossrefs

Programs

  • PARI
    is(n,d=vecextract(divisors(n),"^-1"))={ setminus(select(x->x<10,d),Set(digits(n)))&&return;!for(L=2,#Str(d[#d]),setminus(select(x->x
    <10^L&&x>=10^(L-1),d),Set(concat(vector(L,o,digits(n\10^(L-o),10^L)))))&&return)}
    
  • PARI
    overlap(long,short)=my(D=10^#digits(short)); while(long>=short, if(long%D==short,return(1));long\=10); 0
    is(n)=my(d=divisors(n)); forstep(i=#d-1,1,-1, if(!overlap(n,d[i]), return(0))); 1 \\ Charles R Greathouse IV, Mar 09 2014

A239060 Nonprime numbers whose divisors all appear as a substring in the number's decimal expansion.

Original entry on oeis.org

1, 125, 17692313
Offset: 1

Views

Author

M. F. Hasler, Mar 09 2014

Keywords

Comments

This is the subsequence of A239058 without the primes having a digit 1, A208270. It is thus a subsequence of A092911 (all divisors can be formed using the digits of the number) which is a subsequence of A011531 (numbers having the digit 1).
The term a(3)=17692313=A239058(870356), as well as the numbers 4482669527413081, 21465097175420089, and 567533481816008761 which are also members, were found by Charles R Greathouse IV, Mar 09 2014
The square of any term of A115738 is a member of this sequence. The above larger examples are of that form.
a(4) > 10^12. - Giovanni Resta, Sep 08 2018

Examples

			The divisors of 17692313 are {1, 23, 769231, 17692313}; it can be seen that all of them occur as a substring in 17692313, therefore 17692313 is in this sequence.
		

Crossrefs

Programs

  • PARI
    is(n)=!isprime(n)&&is_A239058(n)
    
  • PARI
    overlap(long,short)=my(D=10^#digits(short)); while(long>=short, if(long%D==short,return(1));long\=10); 0
    is(n)=my(d=divisors(n)); #d!=2 && !forstep(i=#d-1,1,-1, if(!overlap(n,d[i]), return(0))) \\ Charles R Greathouse IV, Mar 09 2014

A355620 a(n) is the sum of the divisors of n whose decimal expansions appear as substrings in the decimal expansion of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 14, 15, 21, 17, 18, 19, 20, 22, 22, 24, 23, 30, 30, 28, 27, 30, 29, 33, 32, 34, 36, 34, 40, 45, 37, 38, 42, 44, 42, 44, 43, 48, 50, 46, 47, 60, 49, 55, 52, 54, 53, 54, 60, 56, 57, 58, 59, 66, 62, 64, 66, 68, 70, 72, 67
Offset: 1

Views

Author

Rémy Sigrist, Jul 10 2022

Keywords

Examples

			For n = 110:
- the divisors of 110 are: 1, 2, 5, 10, 11, 22, 55, 110,
- 1, 10, 11 and 110 appear as substrings in 110,
- so a(110) = 1 + 10 + 11 + 110 = 132.
		

Crossrefs

Cf. A000203, A002275, A121041, A121042, A239058, A355633 (binary analog).

Programs

  • Mathematica
    Table[DivisorSum[n, # &, StringContainsQ[IntegerString[n], IntegerString[#]] &], {n, 100}] (* Paolo Xausa, Jul 23 2024 *)
  • PARI
    a(n, base=10) = { my (d=digits(n, base), s=setbinop((i,j) -> fromdigits(d[i..j], base), [1..#d]), v=0); for (k=1, #s, if (s[k] && n%s[k]==0, v+=s[k])); return (v) }
    
  • Python
    from sympy import divisors
    def a(n):
        s = str(n)
        return sum(d for d in divisors(n, generator=True) if str(d) in s)
    print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Jul 10 2022

Formula

a(n) >= n.
a(n) <= A000203(n) with equality iff n belongs to A239058.
a(10^n) = A002275(n+1) for any n >= 0.

A155005 Smallest number having exactly n divisors that are contained in its decimal representation.

Original entry on oeis.org

1, 10, 12, 110, 120, 1020, 1200, 1248, 10250, 11250, 12480, 31248, 132600, 124800, 112500, 312480, 1248000, 1312500, 1125000, 3124800, 14437500, 16250000, 11250000, 31248000, 103125000, 144375000, 112500000, 131250000
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 18 2009

Keywords

Comments

A121041(a(n)) = n and A121041(m) < n for m < a(n).
Conjecture: a(5+5n)=1125*10^n for n>0. [Robert G. Wilson v, Jan 23 2009]

Examples

			a(4) = 110, A121041(110) = #{1, 10, 11, 110} = 4;
a(5) = 120, A121041(120) = #{1, 2, 12, 20, 120} = 5;
a(6) = 1020, A121041(1020) = #{1, 2, 10, 20, 102, 1020} = 6.
		

Programs

Extensions

a(17)-a(28) from Robert G. Wilson v, Jan 23 2009
Previous Showing 31-39 of 39 results.