cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A121417 Column 1 of triangle A121416.

Original entry on oeis.org

1, 2, 9, 69, 769, 11346, 208914, 4613976, 118840164, 3496297632, 115638728395, 4246267163601, 171369282105510, 7538270885559264, 358926669220446804, 18389706733665138450, 1008742283718489346668, 58981158542987625464424
Offset: 0

Views

Author

Paul D. Hanna, Aug 22 2006

Keywords

Comments

Also column 1 of square array A136737.
A121416 is the matrix square of triangle A121412; row n of triangle T=A121412 equals row (n-1) of T^(n+1) with an appended '1'.

Crossrefs

Cf. A121416 (triangle); other columns: A121418, A121419.

Programs

  • PARI
    {a(n)=local(A=Mat(1), B); for(m=1, n+2, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i,j]=1, B[i, j]=(A^i)[i-1, j]); )); A=B); return((A^2)[n+2, 2])}

Extensions

Edited by N. J. A. Sloane, Oct 30 2008 at the suggestion of R. J. Mathar

A121421 Column 0 of triangle A121420.

Original entry on oeis.org

1, 3, 12, 76, 711, 9054, 147471, 2938176, 69328365, 1891371807, 58575539361, 2030011517685, 77827890696820, 3270046577551695, 149407542447596319, 7374639622066056408, 391044078030333899385, 22168014954558449549349
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2006

Keywords

Comments

Also column 2 of square array A136733.
A121420 is the matrix cube of triangle A121412; row n of triangle T=A121412 equals row (n-1) of T^(n+1) with an appended '1'.

Crossrefs

Cf. A121420 (triangle); other columns: A121422, A121423.

Programs

  • PARI
    {a(n)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i,j]=1, B[i, j]=(A^i)[i-1, j]); )); A=B); return((A^3)[n+1, 1])}

Extensions

Edited by N. J. A. Sloane, Oct 30 2008 at the suggestion of R. J. Mathar

A121425 Main diagonal of rectangular table A121424.

Original entry on oeis.org

1, 2, 12, 118, 1605, 27816, 585046, 14459138, 410368743, 13146830110, 469123986529, 18447791712945, 792514583941223, 36925394368325295, 1854525584914459755, 99872579714406393286, 5740977285851988017769
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2006

Keywords

Comments

Also main diagonal of square array A136733.

Crossrefs

Programs

  • PARI
    {a(n)=local(H=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(H^i)[i-1, j]); )); H=B); return((H^(n+1))[n+1, 1])}

Formula

a(n) = [A121412^(n+1)](n,0) for n>=0; i.e., (n+1)-th term of column 0 in matrix power A121412^(n+1).

Extensions

Edited by N. J. A. Sloane, Oct 30 2008 at the suggestion of R. J. Mathar

A121427 Main diagonal of rectangular table A121426.

Original entry on oeis.org

1, 2, 15, 178, 2820, 55410, 1294776, 35003430, 1073540871, 36805249870, 1394346324624, 57831360118800, 2605921998840420, 126757491839620950, 6619466939158637640, 369368127676399990338, 21932876159270004129285
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2006

Keywords

Comments

Also main diagonal of square array A136737.

Crossrefs

Programs

  • PARI
    {a(n)=local(H=Mat(1), B); for(m=1, n+2, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(H^i)[i-1, j]); )); H=B); return((H^(n+1))[n+2, 2])}

Formula

a(n) = [A121412^(n+1)](n+1,1) for n>=0; i.e., (n+1)-th term of column 1 in matrix power A121412^(n+1).

Extensions

Edited by N. J. A. Sloane, Oct 30 2008 at the suggestion of R. J. Mathar

A121334 Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k, n-k), for n>=k>=0.

Original entry on oeis.org

1, 2, 1, 10, 4, 1, 84, 28, 7, 1, 1001, 286, 66, 11, 1, 15504, 3876, 816, 136, 16, 1, 296010, 65780, 12650, 2024, 253, 22, 1, 6724520, 1344904, 237336, 35960, 4495, 435, 29, 1, 177232627, 32224114, 5245786, 749398, 91390, 9139, 703, 37, 1, 5317936260
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A122175.

Examples

			Triangle begins:
1;
2, 1;
10, 4, 1;
84, 28, 7, 1;
1001, 286, 66, 11, 1;
15504, 3876, 816, 136, 16, 1;
296010, 65780, 12650, 2024, 253, 22, 1;
6724520, 1344904, 237336, 35960, 4495, 435, 29, 1;
177232627, 32224114, 5245786, 749398, 91390, 9139, 703, 37, 1; ...
		

Crossrefs

Cf. A121439 (matrix inverse); A121412; variants: A122178, A121335, A121336; A122175 (dual).

Programs

  • PARI
    T(n,k)=binomial(n*(n+1)/2+n-k,n-k)

Formula

Remarkably, row n of the matrix inverse (A121439) equals row n of A121412^(-n*(n+1)/2-1). Further, the following matrix products of triangles of binomial coefficients are equal: A121412 = A121334*A122178^-1 = A121335*A121334^-1 = A121336*A121335^-1, where row n of H=A121412 equals row (n-1) of H^(n+1) with an appended '1'.

A121335 Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k + 1, n-k), for n>=k>=0.

Original entry on oeis.org

1, 3, 1, 15, 5, 1, 120, 36, 8, 1, 1365, 364, 78, 12, 1, 20349, 4845, 969, 153, 17, 1, 376740, 80730, 14950, 2300, 276, 23, 1, 8347680, 1623160, 278256, 40920, 4960, 465, 30, 1, 215553195, 38320568, 6096454, 850668, 101270, 9880, 741, 38, 1, 6358402050
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A122176.

Examples

			Triangle begins:
1;
3, 1;
15, 5, 1;
120, 36, 8, 1;
1365, 364, 78, 12, 1;
20349, 4845, 969, 153, 17, 1;
376740, 80730, 14950, 2300, 276, 23, 1;
8347680, 1623160, 278256, 40920, 4960, 465, 30, 1;
215553195, 38320568, 6096454, 850668, 101270, 9880, 741, 38, 1; ...
		

Crossrefs

Cf. A121440 (matrix inverse); A121412; variants: A122178, A121334, A121336; A122176 (dual).

Programs

  • PARI
    T(n,k)=binomial(n*(n+1)/2+n-k+1,n-k)

Formula

Remarkably, row n of the matrix inverse (A121440) equals row n of A121412^(-n*(n+1)/2-2). Further, the following matrix products of triangles of binomial coefficients are equal: A121412 = A121334*A122178^-1 = A121335*A121334^-1 = A121336*A121335^-1, where row n of H=A121412 equals row (n-1) of H^(n+1) with an appended '1'.

A121336 Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k + 2, n-k), for n>=k>=0.

Original entry on oeis.org

1, 4, 1, 21, 6, 1, 165, 45, 9, 1, 1820, 455, 91, 13, 1, 26334, 5985, 1140, 171, 18, 1, 475020, 98280, 17550, 2600, 300, 24, 1, 10295472, 1947792, 324632, 46376, 5456, 496, 31, 1, 260932815, 45379620, 7059052, 962598, 111930, 10660, 780, 39, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A122177.

Examples

			Triangle begins:
1;
4, 1;
21, 6, 1;
165, 45, 9, 1;
1820, 455, 91, 13, 1;
26334, 5985, 1140, 171, 18, 1;
475020, 98280, 17550, 2600, 300, 24, 1;
10295472, 1947792, 324632, 46376, 5456, 496, 31, 1;
260932815, 45379620, 7059052, 962598, 111930, 10660, 780, 39, 1; ...
		

Crossrefs

Cf. A121441 (matrix inverse); A121412; variants: A122178, A121334, A121335; A122177 (dual).

Programs

  • PARI
    T(n,k)=binomial(n*(n+1)/2+n-k+2,n-k)

Formula

Remarkably, row n of the matrix inverse (A121441) equals row n of A121412^(-n*(n+1)/2-3). Further, the following matrix products of triangles of binomial coefficients are equal: A121412 = A121334*A122178^-1 = A121335*A121334^-1 = A121336*A121335^-1, where row n of H=A121412 equals row (n-1) of H^(n+1) with an appended '1'.

A121430 Number of subpartitions of partition P=[0,1,1,2,2,2,3,3,3,3,4,...] (A003056).

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 18, 43, 76, 118, 170, 403, 711, 1107, 1605, 2220, 5188, 9054, 13986, 20171, 27816, 37149, 85569, 147471, 225363, 322075, 440785, 585046, 758814, 1725291, 2938176, 4441557, 6285390, 8526057, 11226958, 14459138, 18301950
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2006

Keywords

Comments

See A115728 for the definition of subpartitions of a partition.

Examples

			The g.f. is illustrated by:
1 = (1)*(1-x)^1 + (x + 2*x^2)*(1-x)^2 +
(3*x^3 + 7*x^5 + 12*x^6)*(1-x)^3 +
(18*x^6 + 43*x^7 + 76*x^8 + 118*x^9)*(1-x)^4 +
(170*x^10 + 403*x^11 + 711*x^12 + 1107*x^13 + 1605*x^14)*(1-x)^5 + ...
When the sequence is put in the form of a triangle:
1;
1, 2;
3, 7, 12;
18, 43, 76, 118;
170, 403, 711, 1107, 1605;
2220, 5188, 9054, 13986, 20171, 27816;
37149, 85569, 147471, 225363, 322075, 440785, 585046; ...
then the columns of this triangle form column 0 (with offset)
of successive matrix powers of triangle H=A121412.
This sequence is embedded in table A121424 as follows.
Column 0 of successive powers of matrix H begin:
H^1: [1,1,3,18,170,2220,37149,758814,18301950,...];
H^2: 1, [2,7,43,403,5188,85569,1725291,41145705,...];
H^3: 1,3, [12,76,711,9054,147471,2938176,69328365,...];
H^4: 1,4,18, [118,1107,13986,225363,4441557,103755660,...];
H^5: 1,5,25,170, [1605,20171,322075,6285390,145453290,...];
H^6: 1,6,33,233,2220, [27816,440785,8526057,195579123,...];
H^7: 1,7,42,308,2968,37149, [585046,11226958,255436293,...];
H^8: 1,8,52,396,3866,48420,758814, [14459138,326487241,...];
H^9: 1,9,63,498,4932,61902,966477,18301950, [410368743,...];
the terms enclosed in brackets form this sequence.
		

Crossrefs

Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); A121424, A121425; column 0 of H^n: A121413, A121417, A121421.

Programs

  • PARI
    {a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+1)+1)\2 ) )); polcoeff(A, n))}

Formula

G.f.: 1 = Sum_{n>=1} (1-x)^n * Sum_{k=n*(n-1)/2..n*(n+1)/2-1} a(k)*x^k.

A121431 Number of subpartitions of partition P=[0,0,1,1,1,2,2,2,2,3,3,3,3,3,4,...] (A052146).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 9, 15, 22, 30, 69, 118, 178, 250, 335, 769, 1317, 1995, 2820, 3810, 4984, 11346, 19311, 29126, 41061, 55410, 72492, 92652, 208914, 352636, 528097, 740035, 993678, 1294776, 1649634, 2065146, 4613976, 7722840, 11476963, 15971180
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2006

Keywords

Comments

See A115728 for the definition of subpartitions of a partition.

Examples

			The g.f. may be illustrated by:
1/(1-x) = (1 + 1*x)*(1-x)^0 + (x^2 + 2*x^3 + 3*x^4)*(1-x)^1 +
(4*x^5 + 9*x^6 + 15*x^7 + 22*x^8)*(1-x)^2 +
(30*x^9 + 69*x^10 + 118*x^11 + 178*x^12 + 250*x^13)*(1-x)^3 +
(335*x^14 + 769*x^15 + 1317*x^16 + 1995*x^17 + 2820*x^18 + 3810*x^19)*(1-x)^4 +...
When the sequence is put in the form of a triangle:
1, 1,
1, 2, 3,
4, 9, 15, 22,
30, 69, 118, 178, 250,
335, 769, 1317, 1995, 2820, 3810,
4984, 11346, 19311, 29126, 41061, 55410, 72492,
92652, 208914, 352636, 528097, 740035, 993678, 1294776, ...
then the columns of this triangle form column 1 (with offset)
of successive matrix powers of triangle H=A121412.
This sequence is embedded in table A121426 as follows.
Column 1 of successive powers of matrix H begin:
H^1: [1,1,4,30,335,4984,92652,2065146,53636520,...];
H^2: [1,2,9,69,769,11346,208914,4613976,118840164,...];
H^3: 1, [3,15,118,1317,19311,352636,7722840,197354133,...];
H^4: 1,4, [22,178,1995,29126,528097,11476963,291124693,...];
H^5: 1,5,30, [250,2820,41061,740035,15971180,402319275,...];
H^6: 1,6,39,335, [3810,55410,993678,21310710,533345745,...];
H^7: 1,7,49,434,4984, [72492,1294776,27611970,686872893,...];
H^8: 1,8,60,548,6362,92652, [1649634,35003430,865852191,...];
H^9: 1,9,72,678,7965,116262,2065146, [43626510,1073540871,...];
the terms enclosed in brackets form this sequence.
		

Crossrefs

Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); A121426, A121427; column 1 of H^n: A121414, A121418, A121422; variants: A121430, A121432, A121433.

Programs

  • PARI
    {a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+9)+1)\2 - 1 ) )); polcoeff(A, n))}

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^A052146(n).

A122178 Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k - 1, n-k), for n>=k>=0.

Original entry on oeis.org

1, 1, 1, 6, 3, 1, 56, 21, 6, 1, 715, 220, 55, 10, 1, 11628, 3060, 680, 120, 15, 1, 230230, 53130, 10626, 1771, 231, 21, 1, 5379616, 1107568, 201376, 31465, 4060, 406, 28, 1, 145008513, 26978328, 4496388, 658008, 82251, 8436, 666, 36, 1, 4431613550
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A098568.

Examples

			Triangle begins:
1;
1, 1;
6, 3, 1;
56, 21, 6, 1;
715, 220, 55, 10, 1;
11628, 3060, 680, 120, 15, 1;
230230, 53130, 10626, 1771, 231, 21, 1;
5379616, 1107568, 201376, 31465, 4060, 406, 28, 1;
145008513, 26978328, 4496388, 658008, 82251, 8436, 666, 36, 1; ...
		

Crossrefs

Cf. A121438 (matrix inverse); A121412; variants: A121334, A121335, A121336; A098568 (dual).

Programs

  • PARI
    T(n,k)=binomial(n*(n+1)/2+n-k-1,n-k)

Formula

Remarkably, row n of the matrix inverse (A121438) equals row n of A121412^(-n*(n+1)/2). Further, the following matrix products of triangles of binomial coefficients are equal: A121412 = A121334*A122178^-1 = A121335*A121334^-1 = A121336*A121335^-1, where row n of H=A121412 equals row (n-1) of H^(n+1) with an appended '1'.
Previous Showing 11-20 of 29 results. Next