cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A125061 Expansion of psi(q) * psi(q^2) * chi(q^3) * chi(-q^6) in powers of q where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 3, 0, 1, 1, 2, 0, 3, 2, 0, 6, 1, 2, 1, 0, 2, 0, 0, 0, 3, 3, 2, 3, 0, 2, 6, 0, 1, 0, 2, 0, 1, 2, 0, 6, 2, 2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 6, 2, 2, 3, 0, 0, 0, 2, 0, 6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 9, 0, 0, 6, 0, 2, 1, 2, 0, 0, 4, 0, 6, 0, 2, 2, 0, 0, 0, 0, 0, 3, 2, 1, 0, 3, 2, 6, 0, 2
Offset: 0

Views

Author

Michael Somos, Nov 18 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + q^2 + 3*q^3 + q^4 + 2*q^5 + 3*q^6 + q^8 + q^9 + 2*q^10 + 3*q^12 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.53).

Crossrefs

Programs

  • Mathematica
    s = (EllipticTheta[3, 0, q]^2 + 3*EllipticTheta[3, 0, q^3]^2)/4 + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 07 2015, from 2nd formula *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, ((d%2) * ((d%3==0)+1)) * (-1)^(d\6)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1],
         [p, e] = A[k, ]; if( p==2, 1, p==3, 1+e%2*2, p%4==1, e+1, !(e%2) )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^3 / (eta(q) * eta(q^3) * eta(q^12)^2) in powers of q.
Expansion of (theta_3(q)^2 + 3*theta_3(q^3)^2) / 4 in powers of q.
Euler transform of period 12 sequence [ 1, 0, 2, -2, 1, -2, 1, -2, 2, 0, 1, -2, ...].
Moebius transform is period 12 sequence [ 1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2-(-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) == (1-(-1)^e)/2 if p == 3 (mod 4).
G.f.: 1 + Sum_{k>0} (x^k + x^(3*k)) / (1 - x^(2*k) + x^(4*k)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122857.
a(12*n + 7) = a(12*n + 11) = 0. a(2*n) = a(n). a(2*n + 1) = A138741(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 1) = A008441(n). a(4*n + 3) = 3 * A008441(n). a(6*n + 1) = A002175(n). a(6*n + 5) = 2 * A121444(n). a(8*n + 1) = A113407(n). a(8*n + 3) = 3 * A113407(n). a(8*n + 5) = 2 * A053692(n). a(8*n + 7) = 6 * A053692(n). a(9*n) = A125061(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Nov 24 2023

A138741 Expansion of q^(-1/2) * eta(q)^3 * eta(q^4) * eta(q^12) / (eta(q^2)^2 * eta(q^3)) in powers of q (unsigned).

Original entry on oeis.org

1, 3, 2, 0, 1, 0, 2, 6, 2, 0, 0, 0, 3, 3, 2, 0, 0, 0, 2, 6, 2, 0, 2, 0, 1, 6, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 9, 0, 0, 1, 0, 4, 6, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 6, 2, 0, 2, 0, 1, 6, 4, 0, 0, 0, 0, 6, 2, 0, 0, 0, 4, 3, 2, 0, 2, 0, 2, 6, 0, 0, 0, 0, 3, 0, 2
Offset: 0

Views

Author

Michael Somos, Mar 27 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 2*x^2 + x^4 + 2*x^6 + 6*x^7 + 2*x^8 + 3*x^12 + 3*x^13 + ...
G.f. = q + 3*q^3 + 2*q^5 + q^9 + 2*q^13 + 6*q^15 + 2*q^17 + 3*q^25 + 3*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[ x^(-1/2) (EllipticTheta[ 2, 0, x]^2 + 3 EllipticTheta[ 2, 0, x^3]^2) / 4, {x, 0, n}]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 3, 1, # == 3, 2 - (-1)^#2, Mod[#, 12] < 6, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger[2 n + 1])]; (* Michael Somos, Sep 08 2015 *)
    QP = QPochhammer; s = QP[q^2]^7*QP[q^3]*QP[q^12]^2 / (QP[q]^3*QP[q^4]^2* QP[q^6]^3) + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sumdiv( 2*n + 1, d, (-1)^(d\6) * [0, 1, 0, 2, 0, 1][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, 2 - (-1)^e, p%12<6, e+1, 1-e%2 )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^3 + A) * eta(x^12 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)^2 * eta(x^6 + A)^3), n))};

Formula

Expansion of q^(-1/2) * (theta_2(q)^2 + 3 * theta_2(q^3)^2) / 4 in powers of q.
Expansion of phi(q) * psi(q) * psi(q^3) / phi(q^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Euler transform of period 12 sequence [ 3, -4, 2, -2, 3, -2, 3, -2, 2, -4, 3, -2, ...].
Moebius transform is period 24 sequence [ 1, -1, 2, 0, 1, -2, -1, 0, -2, -1, -1, 0, 1, 1, 2, 0, 1, 2, -1, 0, -2, 1, -1, 0, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1 + (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 12), b(p^e) = (1+(-1)^e)/2 if p = 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 6 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132003.
a(6*n + 3) = a(6*n + 5) = 0.
a(n) = (-1)^n * A116604(n). a(2*n) = A008441(n).
a(6*n) = A002175(n). a(6*n + 1) = 3 * A008441(n). a(6*n + 2) = 2 * A121444(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Dec 28 2023

A258256 Expansion of f(q^3) * psi(-q^3)^3 / (psi(-q) * psi(-q^9)) in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 0, 0, 1, 4, 2, 0, 0, 2, 0, 0, 1, 2, 4, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 4, 2, 0, 0, 2, 2, 0, 0, 0, 8, 0, 0, 0, 1, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 4, 2, 2, 0, 0, 0, 0, 0, 2, 4, 2, 0, 0, 4, 0
Offset: 0

Views

Author

Michael Somos, May 24 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + q^2 + q^4 + 2*q^5 + q^8 + 4*q^9 + 2*q^10 + 2*q^13 + q^16 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 87); A[1] + A[2] + A[3] + A[5] + 2*A[6] + A[9] + 4*A[10] + 2*A[11] + 2*A[14] + A[17] + 2*A[18] + 4*A[19];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, {1, 2, -1, 0}[[Mod[#, 4, 1]]] If[ Divisible[ #, 9], 4, 1] (-1)^(Boole[Mod[#, 8] == 6] + n + #) &]];
    a[ n_] := If[ n < 2, Boole[n >= 0], Times @@ (Which[ # == 2, 1, Mod[#, 4] == 1, #2 + 1, True, If[# == 3, 4, 1] Mod[#2 + 1, 2]] & @@@ FactorInteger[n])];
    a[ n_] := SeriesCoefficient[ q^(1/8) QPochhammer[ -q^3] EllipticTheta[ 2, Pi/4, q^(3/2)]^3 / (Sqrt[2] EllipticTheta[ 2, Pi/4, q^(1/2)] EllipticTheta[ 2, Pi/4, q^(9/2)]), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 1, p%4==1, e+1, if( p==3, 4, 1) * (1 - e%2) )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2 * eta(x^18 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^9 + A) * eta(x^36 + A)), n))};
    

Formula

Expansion of eta(q^2) * eta(q^3)^2 * eta(q^12)^2 * eta(q^18) / (eta(q) * eta(q^4) * eta(q^9) * eta(q^36)) in powers of q.
Euler transform of period 36 sequence [1, 0, -1, 1, 1, -2, 1, 1, 0, 0, 1, -3, 1, 0, -1, 1, 1, -2, 1, 1, -1, 0, 1, -3, 1, 0, 0, 1, 1, -2, 1, 1, -1, 0, 1, -2, ...].
Moebius transform is period 36 sequence [1, 0, -1, 0, 1, 0, -1, 0, 4, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -4, 0, 1, 0, -1, 0, 1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 (t/i) f(t) where q = exp(2 Pi i t).
a(2*n) = a(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 3) = 0. a(12*n + 1) = A002175. a(12*n + 5) = 2 * A121444(n).
a(n) = Sum_{d|n} A258260(d) * (-1)^(n+d) if n>0.
a(n) = (-1)^n * A256282(n). - Michael Somos, Jun 06 2015
a(n) is multiplicative with a(0) = 1, a(2^e) = 1, a(3^e) = 2*(1 + (-1)^e), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), a(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Jun 06 2015
Expansion of A0(x)^2 + A0(x)*A1(x) + A1(x)^2 in powers of x where A0(x) = phi(x^9), A1(x) = x * f(x^3, x^15) = x * A089801(x^3). - Michael Somos, Jun 23 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 (A019670). - Amiram Eldar, Nov 24 2023

A035184 a(n) = Sum_{d|n} Kronecker(-1, d).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, 0, 2, 0, 0, 5, 2, 2, 0, 6, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 6, 0, 4, 0, 3, 2, 0, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 6, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 10, 1, 4, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 9, 2, 0, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^8 + x^9 + 4*x^10 + 2*x^13 + 5*x^16 + 2*x^17 + ...
		

Crossrefs

Inverse Moebius transform of A034947.
Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), this sequence (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[-1, #] &]; Array[a, 105] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1/((1 - X) * (1 - kronecker( -1, p) * X))) [n])}; /* Michael Somos, Jan 05 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -1, d)))}; /* Michael Somos, Jan 05 2012 */

Formula

a(n) is multiplicative with a(2^e) = e + 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4). - Michael Somos, Jan 05 2012
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). a(12*n + 1) = A002175(n). a(12*n + 5) = 2 * A121444(n).
Dirichlet g.f.: zeta(s)*beta(s)/(1 - 2^(-s)), where beta is the Dirichlet beta function. - Ralf Stephan, Mar 27 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 = 1.570796... (A019669). - Amiram Eldar, Oct 17 2022

A129448 Expansion of q * psi(-q) * chi(q^3)^2 * psi(-q^9) in powers of q where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 0, 1, -2, 0, 0, -1, 0, 2, 0, 0, 2, 0, 0, 1, -2, 0, 0, -2, 0, 0, 0, 0, 3, -2, 0, 0, -2, 0, 0, -1, 0, 2, 0, 0, 2, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 1, -3, 0, 2, -2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, -4, 0, 0, -2, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 4, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, -1, 0, 3, -2, 0, 0, -2, 0
Offset: 1

Views

Author

Michael Somos, Apr 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 50 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = q - q^2 + q^4 - 2*q^5 - q^8 + 2*q^10 + 2*q^13 + q^16 - 2*q^17 - 2*q^20 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 82); A[2] - A[3] + A[5] - 2*A[6] - A[9] + 2*A[11] + 2*A[14] + A[17] - 2*A[18]; /* Michael Somos, Jul 09 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ 12, d] KroneckerSymbol[ -3, n/d], {d, Divisors[ n]}]]; (* Michael Somos, Jul 09 2015 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ -q^3, q^6]^2 EllipticTheta[ 2, Pi/4, q^(1/2)] EllipticTheta[ 2, Pi/4, q^(9/2)] / (2 q^(5/4)), {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker( 12, d) * kronecker( -3, n/d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, p==2, (-1)^e, p%12>6, !(e%2), (-1)^(e * (p%12==5)) * (e+1))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^4 * eta(x^9 + A) * eta(x^36 + A) / (eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2 * eta(x^18 + A)), n))};
    

Formula

Expansion of eta(q) * eta(q^4) * eta(q^6)^4 * eta(q^9) * eta(q^36) / (eta(q^2) * eta(q^3)^2 * eta(q^12)^2 * eta(q^18)) in powers of q.
Euler transform of period 36 sequence [ -1, 0, 1, -1, -1, -2, -1, -1, 0, 0, -1, -1, -1, 0, 1, -1, -1, -2, -1, -1, 1, 0, -1, -1, -1, 0, 0, -1, -1, -2, -1, -1, 1, 0, -1, -2, ...].
a(n) is multiplicative with a(2^e) = (-1)^e, a(3^e) = 0^e, a(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12), a(p^e) = e+1 if p == 1 (mod 12), a(p^e) = (-1)^e * (e+1) if p == 5 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker(12, k) * x^k/ (1 + x^k + x^(2*k)).
|a(n)| = A091400(n). a(3*n) = a(4*n + 3) = 0. a(2*n) = -a(n). a(3*n + 1) = A122865(n). a(3*n + 2) = - A122856(n). a(4*n + 1) = A121363(n). a(12*n + 1) = A002175(n). a(12*n + 5) = -2 * A121444(n).

A121363 Expansion of q^(-1/4)(eta(q)*eta(q^6)*eta(q^9)/eta(q^3))^2/(eta(q^2)eta(q^18)) in powers of q.

Original entry on oeis.org

1, -2, 0, 2, -2, 0, 3, -2, 0, 2, -2, 0, 1, -2, 0, 2, -4, 0, 2, 0, 0, 4, -2, 0, 2, -2, 0, 2, -2, 0, 1, -4, 0, 0, -2, 0, 4, -2, 0, 2, 0, 0, 3, -2, 0, 2, -4, 0, 2, -2, 0, 4, 0, 0, 0, -4, 0, 2, -2, 0, 2, -2, 0, 0, -2, 0, 4, -2, 0, 2, -2, 0, 3, -2, 0, 0, -4, 0, 2, -2, 0, 6, 0, 0, 2, 0, 0, 2, -2, 0, 1, -4, 0, 2, -4, 0, 0, -2, 0, 2, -2, 0, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 22 2006

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Crossrefs

A002175(n) = a(3n). A121444(n) = -a(3n+1)/2.

Programs

  • Mathematica
    QP = QPochhammer; s = (QP[q]*QP[q^6]*(QP[q^9]/QP[q^3]))^2/QP[q^2]/QP[q^18]+ O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n)=if(n<0, 0, n=4*n+1; dirmul(vector(n, k, kronecker(12, k)), vector(n, k, kronecker(-12, k)))[n])}
    
  • PARI
    {a(n)=local(A, p, e); if(n<0, 0, n=4*n+1; A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p<5, 0, if(p%4==3, (1+(-1)^e)/2, (e+1)*if(p%3==2, (-1)^e, 1)))))) }
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x+A)*eta(x^6+A)*eta(x^9+A)/ eta(x^3+A))^2/ eta(x^2+A)/ eta(x^18+A), n))}

Formula

Euler transform of period 18 sequence [ -2, -1, 0, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, 0, -1, -2, -2, ...].
a(n) = b(4n+1) where b(n) is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (1+(-1)^e)/2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 12), b(p^e) = (e+1)(-1)^e if p == 5 (mod 12).
G.f.: Product_{k>0} (1+x^(3n))^2(1-x^n)(1-x^(9n))/((1+x^n)(1+x^9n)).
a(3n+2) = 0.
Expansion of phi(-q)*phi(-q^9)/chi(-q^3)^2 in powers of q where phi(),chi() are Ramanujan theta functions.

A129447 Expansion of psi(q) * psi(q^3) * phi(q^3) / phi(q) in powers of q where psi(), phi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, 0, 1, 0, 2, -2, 2, 0, 0, 0, 3, -1, 2, 0, 0, 0, 2, -2, 2, 0, 2, 0, 1, -2, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, -3, 0, 0, 1, 0, 4, -2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, -2, 2, 0, 2, 0, 1, -2, 4, 0, 0, 0, 0, -2, 2, 0, 0, 0, 4, -1, 2, 0, 2, 0, 2, -2, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + 2*x^2 + x^4 + 2*x^6 - 2*x^7 + 2*x^8 + 3*x^12 - x^13 + 2*x^14 + ...
G.f. = q - q^3 + 2*q^5 + q^9 + 2*q^13 - 2*q^15 + 2*q^17 + 3*q^25 - q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, Module[ {m = n}, If[ Mod[n, 6] == 1, m = Quotient[ n, 3]; -1, 1] DivisorSum[ 2 m + 1, KroneckerSymbol[ -4, #] &]]]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := If[ n < 0, 0, Times @@ (Which[# == 1, 1, # == 2, 0, # == 3, (-1)^#2, Mod[#, 4] == 1, #2 + 1, True, Mod[#2 + 1, 2]] & @@@ FactorInteger[2 n + 1])]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, if( n%6==1, n\=3; -1, 1) * sumdiv(2*n + 1, d, kronecker(-4, d)) )};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, p%4==1, e+1, 1-e%2 )))};

Formula

Expansion of q^(-1/2) * eta(q) * eta(q^4)^2 * eta(q^6)^7 / (eta(q^2)^3 * eta(q^3)^3 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ -1, 2, 2, 0, -1, -2, -1, 0, 2, 2, -1, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f.: Product_{k>0} (1 + x^(2*k))^2 * (1 - x^(3*k))^2 * (1 + x^(3*k))^5 / ((1 + x^k) * (1 + x^(6*k))^2).
G.f.: Sum_{k in Z} x^(3*k) / (1 + x^(6*k + 1)) = Sum_{k>0} x^(k-1) * (1 - x^(2*k -1))^2 / (1 + x^(6*k - 3)).
abs(a(n)) = A125079(n). a(6*n + 3) = a(6*n + 5) = 0.
a(6*n) = A002175(n). a(2*n) = A008441(n). a(6*n + 1) = - A008441(n). a(6*n + 2) = 2* A121444(n).

A256280 Expansion of phi(q^3)^4 / (phi(q) * phi(q^9)) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, 0, -2, 8, 0, 0, 4, 4, -4, 0, 0, -4, 0, 0, -2, 8, 4, 0, 8, 0, 0, 0, 0, -6, 8, 0, 0, 8, 0, 0, 4, 0, -4, 0, 4, -4, 0, 0, -4, 8, 0, 0, 0, 8, 0, 0, 0, -2, 12, 0, -4, 8, 0, 0, 0, 0, -4, 0, 0, -4, 0, 0, -2, 16, 0, 0, 8, 0, 0, 0, 4, -4, 8, 0, 0, 0, 0, 0, 8
Offset: 0

Views

Author

Michael Somos, Jun 02 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 4*q^2 - 2*q^4 + 8*q^5 + 4*q^8 + 4*q^9 - 4*q^10 - 4*q^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 91); A[1] - 2*A[2] + 4*A[3] - 2*A[5] + 8*A[6] + 4*A[9] + 4*A[10] - 4*A[11] - 4*A[14] - 2*A[17] + 8*A[18] + 4*A[19];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3]^4 / (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^9]), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, (-2)^(n%3) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^10 * eta(x^9 + A) * eta(x^36 + A))^2 / (eta(x^2 + A)^5 * eta(x^3 + A)^8 * eta(x^12 + A)^8 * eta(x^18 + A)^5), n))};
    

Formula

Expansion of (eta(q) * eta(q^4) * eta(q^6)^10 * eta(q^9) * eta(q^36))^2 / (eta(q^2)^5 * eta(q^3)^8 * eta(q^12)^8 * eta(q^18)^5) in powers of q.
Euler transform of period 36 sequence [ -2, 3, 6, 1, -2, -9, -2, 1, 4, 3, -2, -3, -2, 3, 6, 1, -2, -6, -2, 1, 6, 3, -2, -3, -2, 3, 4, 1, -2, -9, -2, 1, 6, 3, -2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 (t/i) f(t) where q = exp(2 Pi i t).
a(3*n + 1) = -2 * A122865(n). a(3*n + 2) = 4 * A122856(n). a(4*n + 3) = 0. a(4*n) = a(n). a(9*n) = A004018(n). a(9*n + 3) = a(9*n + 6) = 0. a(12*n + 1) = -2 * A002175(n). a(12*n + 5) = 8 * A121444(n).

A258279 Expansion of psi(q)^2 * chi(-q^3)^2 in powers of q where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 1, 0, -2, -2, 0, 0, 1, -4, -4, 0, 0, 4, 0, 0, -2, -2, 4, 0, 2, 0, 0, 0, 0, 6, 2, 0, 0, -2, 0, 0, 1, 0, -4, 0, 4, 4, 0, 0, -4, -2, 0, 0, 0, -8, 0, 0, 0, 2, 3, 0, -4, -2, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, -2, -4, 0, 0, 2, 0, 0, 0, 4, 4, 2, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, May 25 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + q^2 - 2*q^4 - 2*q^5 + q^8 - 4*q^9 - 4*q^10 + 4*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, Pi/6, q]^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)))^2, n))};

Formula

Expansion of eta(q^2)^4 * eta(q^3)^2 / (eta(q)^2 * eta(q^6)^2) in powers of q.
Euler transform of period 6 sequence [ 2, -2, 0, -2, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 36 (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A002175.
G.f.: Product_{k>0} (1 - x^(2*k))^2 / (1 - x^k + x^(2*k))^2.
Convolution square of A089810.
a(2*n) = A258228(n). a(3*n + 1) = 2 * A258277(n). a(3*n + 2) = A258278(n). a(4*n + 3) = 0. a(6*n + 2) = A122865(n). a(6*n + 4) = -2 * A122856(n). a(12*n + 1) = 2 * A002175(n). a(12*n + 5) = -2 * A121444(n).
a(18*n) = A004018(n). a(18*n + 3) = a(18*n + 6) = a(18*n + 12) = 0.

A258291 Expansion of q^(-1/4) * eta(q) * eta(q^2) * eta(q^6) / eta(q^3) in powers of q.

Original entry on oeis.org

1, -1, -2, 2, -1, 0, 3, -1, 0, 2, -1, -4, 1, -1, 0, 2, -2, 0, 2, 0, -2, 4, -1, 0, 2, -1, 0, 2, -1, -4, 1, -2, 0, 0, -1, 0, 4, -1, -4, 2, 0, 0, 3, -1, 0, 2, -2, 0, 2, -1, 0, 4, 0, 0, 0, -2, -6, 2, -1, 0, 2, -1, 0, 0, -1, -4, 4, -1, 0, 2, -1, 0, 3, -1, 0, 0, -2
Offset: 0

Views

Author

Michael Somos, May 25 2015

Keywords

Examples

			G.f. = 1 - x - 2*x^2 + 2*x^3 - x^4 + 3*x^6 - x^7 + 2*x^9 - x^10 - 4*x^11 + ...
G.f. = q - q^5 - 2*q^9 + 2*q^13 - q^17 + 3*q^25 - q^29 + 2*q^37 - q^41 + ...
		

Crossrefs

Programs

  • Mathematica
    QP := QPochhammer; CoefficientList[Series[QP[q]*QP[q^2]*QP[q^6]/QP[q^3], {q, 0, 50}], q] (* G. C. Greubel, Aug 04 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^6 + A) / eta(x^3 + A), n))};

Formula

Euler transform of period 6 sequence [ -1, -2, 0, -2, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 9 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A258277.
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(2*k)) * (1 + x^(3*k)).
a(3*n) = A002175(n). a(3*n + 1) = - A121444(n). a(9*n + 2) = -2 * A008441(n). a(9*n + 5) = a(9*n + 8) = 0.
Previous Showing 11-20 of 24 results. Next