cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 50 results.

A153832 Atavistic Index Sequence to A089840 computed for ENIPS.

Original entry on oeis.org

0, 15, 3617, 3677, 3690, 3721, 3744
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

Recursive transformation ENIPS for Catalan bijections has a well-defined inverse (see the definition & comments at A122204). For all Catalan bijections in A089840 that inverse produces a bijection which is itself in A089840. This sequence gives the indices to those positions where each ("primitive", non-recursive bijection) of A089840(n) occurs "atavistically" amongst the more complex recursive bijections in A122204. I.e. A122204(a(n)) = A089840(n). Similarly, other "atavistic forms" resurface as: A122287(a(n)) = A122201(n), A122286(a(n)) = A122203(n) and A122202(a(n)) = A122284(n). See also comments at A153833.
There exists similar atavistic index sequences computed for FORK (A122201) and KROF (A122202). Both start as 0,1654720,... (see A129604). This implies that regardless of how complex recursive derivations from A089840 one forms by repeatedly applying SPINE, ENIPS, FORK and/or KROF in some order (finite number of times), all the original primitive non-recursive elements of A089840 will eventually appear at some positions.
Other known terms: a(12)=65167, a(13)=65178, a(14)=65236, a(15)=169, a(16)=65302, a(22)-a(44) = 1656351, 1656576, 1656777, 1656628, 1656704, 1659507, 1659538, 1659653, 1659798, 1659685, 1659830, 1660155, 1660582, 1660439, 1660476, 1660621, 1660196, 1661073, 1660930, 1660859, 1661004, 1661287, 1661360.

Crossrefs

Formula

a(n) = A089839bi(n,A153834(A089843(n))).

A153833 Atavistic Index Sequence to A089840 computed for SPINE.

Original entry on oeis.org

0, 21, 3613, 3771, 3906, 3929, 3783
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

Recursive transformation SPINE for Catalan bijections has a well-defined inverse (see the definition & comments at A122203). For all Catalan bijections in A089840 that inverse produces a bijection which is itself in A089840. This sequence gives the indices to those positions where each ("primitive", non-recursive bijection) of A089840(n) occurs "atavistically" amongst the more complex recursive bijections in A122203. I.e. A122203(a(n)) = A089840(n). Similarly, other "atavistic forms" resurface as: A122288(a(n)) = A122202(n), A122285(a(n)) = A122204(n) and A122201(a(n)) = A122283(n). See also comments at A153832.
Other known terms: a(17)-a(44): 65352, 65359, 65604, 65739, 251, 1656303, 1656426, 1656552, 1656628, 1656479, 1661655, 1661816, 1666720, 1684006, 1684221, 1667042, 1667007, 1684152, 1661799, 1661676, 1666759, 1684081, 1684437, 1667151, 1684509, 1667187, 1661961, 1661944.

Crossrefs

Formula

a(n) = A089839bi(A153834(A089843(n)),n)

A153826 Index sequence to A089840: positions of bijections that preserve A127301 (the non-oriented form of general trees).

Original entry on oeis.org

0, 2, 22, 23, 24, 25, 26, 91, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 395, 531, 634, 876, 1005, 1109, 1228, 1229, 1230, 1231, 1232, 1704, 3608, 3611, 3613, 3615, 3617, 4392
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

These terms form a subgroup in A089840 (A089839). Because A127301 can be computed as a fold and most of the recursive derivations of A089840 (i.e., tables A122201-A122204, A122283-A122290, A130400-A130403) are also folds, this sequence also gives the indices to those derived tables where bijections preserving A127301 occur.

Crossrefs

Subset of A153827. Apart from 0, has no other terms in common with A153829. Cf. also A153828, A153830, A153831, A153832, A153833.

A153829 Index sequence to A089840: positions of bijections that preserve A153835, or equivalently, A127302 (the non-oriented form of binary trees).

Original entry on oeis.org

0, 1, 3, 7, 15, 21, 27, 46, 68, 73, 74, 83, 84, 87, 88, 92, 114, 149, 169, 183, 184, 189, 190, 199, 202, 203, 225, 251, 252, 254, 261, 262, 268, 269, 270, 271, 299, 400, 515, 537, 539, 573, 575, 591, 593, 638, 753, 871, 894, 895, 990, 995, 996, 1110, 1132
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

These elements form a subgroup in A089840 (A089839). Such elements consists of only such clauses where each vertex stays at the same distance from the root of the binary tree and in the image tree will still be sibling to its original sibling in the pre-image tree.
Because A127302 can be computed as a fold and most of the recursive derivations of A089840 (i.e. tables A122201-A122204, A122283-A122290, A130400-A130403) are also folds, this sequence gives also the indices to those derived tables where bijections preserving A127302 occur.

Crossrefs

Superset of A153830. Apart from 0, has no other elements common with A153826. Cf. also A153831, A153827, A153829, A153832, A153833.

A153830 Index sequence to A089840: positions of bijections that preserve A127302 (the non-oriented form of binary trees) and whose behavior does not depend on whether there are internal or terminal nodes (leaves) in the neighborhood of any vertex.

Original entry on oeis.org

0, 1, 3, 7, 15, 21, 27, 46, 92, 114, 149, 169, 225, 251, 299, 400, 638, 753, 1233, 1348, 1705, 1823, 1992, 2097, 2335, 2451, 2995, 3128, 3485, 3607, 3677, 3771, 4214, 4307, 4631, 5254, 6692, 7393, 10287, 10988, 13145, 13860, 20353, 21054
Offset: 0

Views

Author

Antti Karttunen, Jan 07 2009

Keywords

Comments

These elements form a subgroup in A089840 (A089839) isomorphic to a group consisting of all finitely iterated wreath products of the form S_2 wr S_2 wr ... wr S_2 and each is an image of some finitary automorphism of an infinite binary tree. E.g. A089840(1) = *A069770 is an image of the generator A of Grigorchuk Group. See comments at A153246 and A153141.
The defining properties are propagated by all recursive transformations of A089840 which themselves do not behave differently depending whether there are internal or terminal vertices in the neighborhood of any vertex (at least the ones given in A122201-A122204, A122283-A122290, A130400-A130403), so this sequence gives also the corresponding positions in those tables.

Crossrefs

A122351 Row 1 of A122289 and A122290. An involution of nonnegative integers.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 6, 4, 5, 18, 17, 20, 22, 21, 16, 19, 14, 10, 9, 15, 11, 13, 12, 49, 50, 48, 45, 46, 55, 54, 61, 63, 64, 57, 62, 58, 59, 47, 44, 53, 60, 56, 42, 51, 38, 26, 27, 37, 25, 23, 24, 43, 52, 39, 29, 28, 41, 33, 35, 36, 40, 30, 34, 31, 32, 143, 142, 146, 148, 147
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

The signature-permutation of the automorphism which is derived from the automorphism *A057163 with the recursion schema FORK (see A122201), that is, from the first non-recursive automorphism *A069770 with FORK(FORK(*A069770)) or equivalently, with KROF(KROF(*A069770)) (see A122202).

Crossrefs

A007595 gives the number of orbits in range [A014137(n-1)..A014138(n-1)] of this permutation.

A129604 Signature-permutation of a Catalan automorphism, row 1654720 of A089840.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 6, 5, 4, 21, 22, 20, 17, 18, 19, 16, 15, 12, 13, 14, 11, 9, 10, 58, 59, 62, 63, 64, 57, 61, 54, 45, 46, 55, 48, 49, 50, 56, 60, 53, 44, 47, 52, 43, 40, 31, 32, 41, 34, 35, 36, 51, 42, 39, 30, 33, 37, 28, 23, 24, 38, 29, 25, 26, 27, 170, 171, 174, 175, 176
Offset: 0

Views

Author

Antti Karttunen, May 22 2007

Keywords

Comments

This involution effects the following transformation on the binary trees (labels A,B,C,D refer to arbitrary subtrees located on those nodes and () stands for a terminal node.)
.A..B.C..D.....D..C.B..A.......B...C...C...B........A...B............B...A
..\./.\./.......\./.\./.........\./.....\./..........\./..............\./.
...x...x....-->..x...x.......()..x..-->..x..()........x..()...-->..()..x..
....\./...........\./.........\./.........\./..........\./..........\./...
.....x.............x...........x...........x............x............x....
Note that automorphism *A069770 = FORK(*A129604) = KROF(*A129604). See the definitions given in A122201 and A122202.

Crossrefs

a(n) = A069770(A089864(n)) = A089864(A069770(n)). The number of cycles and the number of fixed points in range [A014137(n-1)..A014138(n-1)] of this involution are given by the same sequences as is the case for example with A069770, A057163 and A122351, that is, A007595 and zero-interspersed A000108.

A130923 Signature permutation of a Catalan automorphism: Inverse FORK-transform of automorphism *A120705.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 5, 4, 6, 17, 18, 20, 21, 22, 12, 11, 13, 9, 10, 15, 14, 16, 19, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 31, 32, 29, 28, 30, 34, 33, 35, 27, 24, 36, 23, 26, 25, 40, 39, 41, 37, 38, 43, 42, 44, 47, 52, 51, 53, 56, 60, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

This is the unique Catalan automorphism f, such that *A120705 = (FORK f). See A122201 for the definition of FORK.

Crossrefs

Inverse: A130924. Cf. A130925 & A130926.

A130925 Signature permutation of a Catalan automorphism: Inverse FORK-transform of automorphism *A120706.

Original entry on oeis.org

0, 1, 3, 2, 6, 8, 7, 4, 5, 14, 15, 19, 21, 22, 16, 17, 20, 9, 10, 18, 11, 12, 13, 37, 38, 39, 40, 41, 51, 52, 56, 62, 59, 60, 64, 63, 58, 42, 43, 44, 45, 46, 53, 54, 55, 23, 24, 61, 25, 26, 27, 47, 48, 57, 28, 29, 49, 30, 31, 32, 50, 33, 34, 35, 36, 107, 108, 109, 110, 111
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

This is the unique Catalan automorphism f, such that *A120706 = (FORK f). See A122201 for the definition of FORK.

Crossrefs

Inverse: A130926. Cf. A130923 & A130924.

A122363 Row 2 of A122289.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 14, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 28, 25, 26, 27, 37, 38, 42, 44, 47, 51, 53, 56, 60, 24, 29, 39, 43, 52, 30, 40, 31, 45, 54, 34, 48, 49, 50, 33, 41, 32, 46, 55, 35, 57, 58, 62, 36, 61, 59, 63, 64, 65, 67, 79, 84, 93, 66, 81
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

The signature-permutation of the automorphism which is derived from the second non-recursive automorphism *A072796 with FORK(FORK(*A072796)) = FORK(*A057511). (see A122201 for the definition of FORK).

Crossrefs

Inverse: A122364.
Previous Showing 41-50 of 50 results.