A128345
Numbers k such that (8^k - 5^k)/3 is prime.
Original entry on oeis.org
2, 19, 1021, 5077, 34031, 46099, 65707, 347437
Offset: 1
Cf.
A062572,
A128344,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=8; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,200}]
Select[Range[5000],PrimeQ[(8^#-5^#)/3]&] (* Harvey P. Dale, Mar 23 2011 *)
-
is(n)=isprime((8^n-5^n)/3) \\ Charles R Greathouse IV, Feb 17 2017
A128352
Numbers k such that (17^k - 5^k)/12 is prime.
Original entry on oeis.org
5, 7, 17, 23, 43, 71, 239, 733, 1097
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128353,
A128354.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=17; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((17^n-5^n)/12) \\ Charles R Greathouse IV, Feb 17 2017
A128353
Numbers k such that (18^k - 5^k)/13 is prime.
Original entry on oeis.org
2, 3, 19, 23, 31, 37, 251, 283, 977, 28687, 32993
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128354.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=18; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((18^n-5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017
A128354
Numbers k such that (19^k - 5^k)/14 is prime.
Original entry on oeis.org
5, 17, 31, 59, 373, 643, 2843, 5209, 85009
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=19; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((19^n-5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017
A128349
Numbers k such that (13^k - 5^k)/8 is prime.
Original entry on oeis.org
5, 19, 71, 197, 659, 22079, 61949
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128350,
A128351,
A128352,
A128353,
A128354.
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=13; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((13^n-5^n)/8) \\ Charles R Greathouse IV, Feb 17 2017
A128350
Numbers k such that (14^k - 5^k)/9 is prime.
Original entry on oeis.org
2, 151, 673, 709, 2999, 17909, 77213
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128351,
A128352,
A128353,
A128354. Cf.
A004061,
A082182,
A121877,
A059802. Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128338,
A128339,
A128340,
A128341,
A128342.
-
k=14; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,200}]
-
is(n)=isprime((14^n-5^n)/9) \\ Charles R Greathouse IV, Feb 17 2017
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
A128351
Numbers k such that (16^k - 5^k)/11 is prime.
Original entry on oeis.org
7, 13, 109, 139, 967, 60013, 97613
Offset: 1
Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128352,
A128353,
A128354,
A004061,
A082182,
A121877,
A059802,
A057171,
A082387,
A122853,
A128335-
A128342.
-
k=16; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((16^n-5^n)/11) \\ Charles R Greathouse IV, Feb 17 2017
A128066
Numbers k such that (3^k + 4^k)/7 is prime.
Original entry on oeis.org
3, 5, 19, 37, 173, 211, 227, 619, 977, 1237, 2437, 5741, 13463, 23929, 81223, 121271
Offset: 1
-
a:=proc(n) if type((3^n+4^n)/7,integer)=true and isprime((3^n+4^n)/7)=true then n else fi end: seq(a(n),n=1..1500); # Emeric Deutsch, Feb 17 2007
-
Do[ p=Prime[n]; f=(3^p+4^p)/(4+3); If[ PrimeQ[f], Print[p]], {n,1,100} ]
-
f(n)=(3^n + 4^n)/7;
forprime(n=3,10^5,if(ispseudoprime(f(n)),print1(n,", ")))
/* Joerg Arndt, Mar 27 2011 */
Two more terms (13463 and 23929) found by Lelio R Paula in 2008 corresponding to probable primes with 8105 and 14406 digits.
Jean-Louis Charton, Oct 06 2010
Two more terms (81223 and 121271) found by Jean-Louis Charton in March 2011 corresponding to probable primes with 48901 and 73012 digits
A128338
Numbers k such that (8^k + 5^k)/13 is prime.
Original entry on oeis.org
7, 19, 167, 173, 223, 281, 21647
Offset: 1
Cf.
A057171,
A082387,
A122853,
A128335,
A128336,
A128337,
A128339,
A128340,
A128341,
A128342,
A128343. Cf.
A004061,
A082182,
A121877,
A059802. Cf.
A062572,
A128344,
A128345,
A128346,
A128347,
A128348,
A128349,
A128350,
A128351,
A128352,
A128353,
A128354.
-
k=8; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
-
is(n)=isprime((8^n+5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017
A128071
Numbers k such that (3^k + 13^k)/16 is prime.
Original entry on oeis.org
3, 7, 127, 2467, 3121, 34313
Offset: 1
Cf.
A007658 = numbers n such that (3^n + 1)/4 is prime. Cf.
A057469 = numbers n such that (3^n + 2^n)/5 is prime. Cf.
A122853 = numbers n such that (3^n + 5^n)/8 is prime. Cf.
A128066,
A128067,
A128068,
A128069,
A128070,
A128072,
A128073,
A128074,
A128075. Cf.
A059801 = numbers n such that 4^n - 3^n is prime. Cf.
A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf.
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031,
A128032.
-
k=13; Do[ p=Prime[n]; f=(3^p+k^p)/(k+3); If[ PrimeQ[f], Print[p]], {n,1,100} ]
-
is(n)=isprime((3^n+13^n)/16) \\ Charles R Greathouse IV, Feb 17 2017
Comments