cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A128345 Numbers k such that (8^k - 5^k)/3 is prime.

Original entry on oeis.org

2, 19, 1021, 5077, 34031, 46099, 65707, 347437
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No further terms up to 5000 - Harvey P. Dale, Mar 23 2011
a(8) > 10^5 - Robert Price, Dec 22 2012
a(9) > 10^6 - Jon Grantham, Jul 29 2023

Crossrefs

Programs

  • Mathematica
    k=8; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,200}]
    Select[Range[5000],PrimeQ[(8^#-5^#)/3]&]  (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    is(n)=isprime((8^n-5^n)/3) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(4)-a(7) from Robert Price, Dec 22 2012
a(8) from Jon Grantham, Jul 29 2023

A128352 Numbers k such that (17^k - 5^k)/12 is prime.

Original entry on oeis.org

5, 7, 17, 23, 43, 71, 239, 733, 1097
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jun 11 2013

Crossrefs

Programs

  • Mathematica
    k=17; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((17^n-5^n)/12) \\ Charles R Greathouse IV, Feb 17 2017

A128353 Numbers k such that (18^k - 5^k)/13 is prime.

Original entry on oeis.org

2, 3, 19, 23, 31, 37, 251, 283, 977, 28687, 32993
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(12) > 10^5. - Robert Price, Aug 10 2013

Crossrefs

Programs

  • Mathematica
    k=18; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((18^n-5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(10)-a(11) from Robert Price, Aug 10 2013

A128354 Numbers k such that (19^k - 5^k)/14 is prime.

Original entry on oeis.org

5, 17, 31, 59, 373, 643, 2843, 5209, 85009
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jul 22 2013

Crossrefs

Programs

  • Mathematica
    k=19; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((19^n-5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, Jul 22 2013

A128349 Numbers k such that (13^k - 5^k)/8 is prime.

Original entry on oeis.org

5, 19, 71, 197, 659, 22079, 61949
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Mar 05 2013

Crossrefs

Programs

  • Mathematica
    k=13; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((13^n-5^n)/8) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6)-a(7) from Robert Price, Mar 05 2013

A128350 Numbers k such that (14^k - 5^k)/9 is prime.

Original entry on oeis.org

2, 151, 673, 709, 2999, 17909, 77213
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Apr 23 2013

Crossrefs

Programs

  • Mathematica
    k=14; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,200}]
  • PARI
    is(n)=isprime((14^n-5^n)/9) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
a(6) and a(7) from Robert Price, Apr 23 2013

A128351 Numbers k such that (16^k - 5^k)/11 is prime.

Original entry on oeis.org

7, 13, 109, 139, 967, 60013, 97613
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Jul 03 2013

Crossrefs

Programs

  • Mathematica
    k=16; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((16^n-5^n)/11) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6)-a(7) from Robert Price, Jul 03 2013

A128066 Numbers k such that (3^k + 4^k)/7 is prime.

Original entry on oeis.org

3, 5, 19, 37, 173, 211, 227, 619, 977, 1237, 2437, 5741, 13463, 23929, 81223, 121271
Offset: 1

Views

Author

Alexander Adamchuk, Feb 14 2007

Keywords

Comments

All terms are primes.

Crossrefs

Cf. A007658 = n such that (3^n + 1)/4 is prime; A057469 ((3^n + 2^n)/5); A122853 ((3^n + 5^n)/8).
Cf. A059801 (4^n - 3^n); A121877 ((5^n - 3^n)/2).

Programs

  • Maple
    a:=proc(n) if type((3^n+4^n)/7,integer)=true and isprime((3^n+4^n)/7)=true then n else fi end: seq(a(n),n=1..1500); # Emeric Deutsch, Feb 17 2007
  • Mathematica
    Do[ p=Prime[n]; f=(3^p+4^p)/(4+3); If[ PrimeQ[f], Print[p]], {n,1,100} ]
  • PARI
    f(n)=(3^n + 4^n)/7;
    forprime(n=3,10^5,if(ispseudoprime(f(n)),print1(n,", ")))
    /* Joerg Arndt, Mar 27 2011 */

Extensions

3 more terms from Emeric Deutsch, Feb 17 2007
2 more terms from Farideh Firoozbakht, Apr 16 2007
Two more terms (13463 and 23929) found by Lelio R Paula in 2008 corresponding to probable primes with 8105 and 14406 digits. Jean-Louis Charton, Oct 06 2010
Two more terms (81223 and 121271) found by Jean-Louis Charton in March 2011 corresponding to probable primes with 48901 and 73012 digits

A128338 Numbers k such that (8^k + 5^k)/13 is prime.

Original entry on oeis.org

7, 19, 167, 173, 223, 281, 21647
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Jan 21 2013

Crossrefs

Programs

  • Mathematica
    k=8; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((8^n+5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7) from Robert Price, Jan 21 2013

A128071 Numbers k such that (3^k + 13^k)/16 is prime.

Original entry on oeis.org

3, 7, 127, 2467, 3121, 34313
Offset: 1

Views

Author

Alexander Adamchuk, Feb 14 2007

Keywords

Comments

All terms are primes.
a(4) is certified prime by primo; a(5) is a probable prime. - Ray G. Opao, Aug 02 2007
a(7) > 10^5. - Robert Price, Apr 14 2013

Crossrefs

Cf. A007658 = numbers n such that (3^n + 1)/4 is prime. Cf. A057469 = numbers n such that (3^n + 2^n)/5 is prime. Cf. A122853 = numbers n such that (3^n + 5^n)/8 is prime. Cf. A128066, A128067, A128068, A128069, A128070, A128072, A128073, A128074, A128075. Cf. A059801 = numbers n such that 4^n - 3^n is prime. Cf. A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf. A128024, A128025, A128026, A128027, A128028, A128029, A128030, A128031, A128032.

Programs

  • Mathematica
    k=13; Do[ p=Prime[n]; f=(3^p+k^p)/(k+3); If[ PrimeQ[f], Print[p]], {n,1,100} ]
  • PARI
    is(n)=isprime((3^n+13^n)/16) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

One more term from Ray G. Opao, Aug 02 2007
a(6) from Robert Price, Apr 14 2013
Previous Showing 11-20 of 31 results. Next