cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A133679 a(n) = 7*a(n-1) + 56*a(n-2) for n>=3, a(0)=1, a(1)=7, a(2)=98.

Original entry on oeis.org

1, 7, 98, 1078, 13034, 151606, 1791146, 21027958, 247499882, 2910064822, 34230447146, 402576760054, 4734942360554, 55688895086902, 654979037799338, 7703431389461878, 90602845842996074, 1065612078710837686, 12533043918183643946
Offset: 0

Views

Author

Philippe Deléham, Dec 31 2007

Keywords

Crossrefs

Cf. A122950.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 7*x^2)/(1 - 7*x - 56*x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jan 21 2017 *)
    LinearRecurrence[{7,56},{1,7,98},20] (* Harvey P. Dale, Dec 27 2019 *)

Formula

G.f.: (1 - 7*x^2)/(1 - 7*x - 56*x^2).
a(n) = Sum_{k=0..n} A122950(n,k)*7^k.

Extensions

a(8) and a(13) corrected by Georg Fischer, May 03 2019

A133680 a(n)=8*a(n-1)+72*a(n-2) for n>=3, a(0)=1, a(1)=8, a(2)=128 .

Original entry on oeis.org

1, 8, 128, 1600, 22016, 291328, 3915776, 52301824, 700350464, 9368535040, 125373513728, 1677522632704, 22447074050048, 300358221955072, 4019055107244032, 53778232838717440, 719597830431309824
Offset: 0

Views

Author

Philippe Deléham, Dec 31 2007

Keywords

Programs

  • Mathematica
    LinearRecurrence[{8,72},{1,8,128},20] (* Harvey P. Dale, Sep 15 2015 *)

Formula

G.f.: (1-8*x^2)/(1-8*x-72*x^2) . a(n) = Sum_{k, 0<=k<=n}A122950(n,k)*8^k .

A167704 a(0)=1, a(1)=0, a(2)=2, a(3)=1, a(n)=a(n-2)+a(n-3)+a(n-4) for n>3.

Original entry on oeis.org

1, 0, 2, 1, 3, 3, 6, 7, 12, 16, 25, 35, 53, 76, 113, 164, 242, 353, 519, 759, 1114, 1631, 2392, 3504, 5137, 7527, 11033, 16168, 23697, 34728, 50898, 74593, 109323, 160219, 234814, 344135, 504356, 739168, 1083305, 1587659, 2326829, 3410132, 4997793, 7324620
Offset: 0

Views

Author

Philippe Deléham, Nov 10 2009

Keywords

Comments

Diagonal sums of triangle in A122950.

Programs

  • Mathematica
    LinearRecurrence[{0,1,1,1},{1,0,2,1},50] (* Harvey P. Dale, Aug 09 2015 *)

Formula

G.f.: (1-x^3)/(1-x^2-x^3-x^4).
a(n) = a(n-2) + a(n-3) + a(n-4). - G. C. Greubel, Jun 20 2016

Extensions

Corrected and extended by Harvey P. Dale, Aug 09 2015

A133594 a(n)=3*a(n-1)+12*a(n-2) for n>=3, a(0)=1, a(1)=3, a(2)=18 .

Original entry on oeis.org

1, 3, 18, 90, 486, 2538, 13446, 70794, 373734, 1970730, 10396998, 54839754, 289283238, 1525926762, 8049179142, 42458658570, 223966125414, 1181402279082, 6231800342214, 32872228375626, 173398289233446, 914661608207850
Offset: 0

Views

Author

Philippe Deléham, Dec 31 2007

Keywords

Programs

  • Mathematica
    LinearRecurrence[{3,12},{1,3,18},30] (* Harvey P. Dale, Dec 20 2020 *)

Formula

G.f.: (1-3*x^2)/(1-3*x-12*x^2) . a(n) = Sum_{k, 0<=k<=n}A122950(n,k)*3^k .

A133642 a(n) = 4*a(n-1)+20*a(n-2) for n>=3, a(0)=1, a(1)=4, a(2)=32.

Original entry on oeis.org

1, 4, 32, 208, 1472, 10048, 69632, 479488, 3310592, 22832128, 157540352, 1086803968, 7498022912, 51728171008, 356873142272, 2462055989248, 16985686802432, 117183866994688, 808449204027392, 5577474156003328, 38478880704561152, 265465005938311168
Offset: 0

Views

Author

Philippe Deléham, Dec 31 2007

Keywords

Crossrefs

Cf. A122950.

Formula

G.f.: (1-4*x^2)/(1-4*x-20*x^2).
a(n) = Sum_{k=0..n} A122950(n,k)*4^k.

Extensions

a(15) corrected by Georg Fischer, Mar 13 2020

A133678 a(n)=6*a(n-1)+42*a(n-2) for n>=3, a(0)=1, a(1)=6, a(2)=72 .

Original entry on oeis.org

1, 6, 72, 684, 7128, 71496, 728352, 7372944, 74828448, 758634336, 7694600832, 78030247104, 791354717568, 8025398683776, 81389290240512, 825402486161664, 8370765107071488, 84891495061218816, 860921104864315392, 8730969421757082624, 88544502934843742208
Offset: 0

Views

Author

Philippe Deléham, Dec 31 2007

Keywords

References

  • D. A. Cox, Primes of the form x^2+ny^2, Wiley, New York, 1989.
  • D. E. Flath, Introduction to Number Theory, Wiley-Interscience, 1989.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{6,42},{6,72},20]] (* Harvey P. Dale, Mar 25 2015 *)

Formula

G.f.: (1-6*x^2)/(1-6*x-42*x^2) . a(n) = Sum_{k, 0<=k<=n}A122950(n,k)*6^k .
a(1)=6, a(2)=72, a(n)=6*a(n-1)+42*a (n-2). - Harvey P. Dale, Mar 25 2015

Extensions

Corrected and extended by Harvey P. Dale, Mar 25 2015

A133681 a(n)=9*a(n-1)+90*a(n-2) for n>=3, a(0)=1, a(1)=9, a(2)=162 .

Original entry on oeis.org

1, 9, 162, 2268, 34992, 519048, 7820712, 117100728, 1757770632, 26359001208, 395430367752, 5931183418488, 88969383864072, 1334530962440568, 20018023209731592, 300269995507235448, 4504052048440962312
Offset: 0

Views

Author

Philippe Deléham, Dec 31 2007

Keywords

Formula

G.f.: (1-9*x^2)/(1-9*x-90*x^2) . a(n) = Sum_{k, 0<=k<=n}A122950(n,k)*9^k .

A209599 Triangle T(n,k), read by rows, given by (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 5, 3, 0, 0, 8, 7, 1, 0, 0, 13, 15, 4, 0, 0, 0, 21, 30, 12, 1, 0, 0, 0, 34, 58, 31, 5, 0, 0, 0, 0, 55, 109, 73, 18, 1, 0, 0, 0, 0, 89, 201, 162, 54, 6, 0, 0, 0, 0, 0, 144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 10 2012

Keywords

Comments

A skew version of A122075.

Examples

			Triangle begins :
  1
  2, 0
  3, 1, 0
  5, 3, 0, 0
  8, 7, 1, 0, 0
  13, 15, 4, 0, 0, 0
  21, 30, 12, 1, 0, 0, 0
  34, 58, 31, 5, 0, 0, 0, 0
  55, 109, 73, 18, 1, 0, 0, 0, 0
  89, 201, 162, 54, 6, 0, 0, 0, 0, 0
  144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
  ...
		

Crossrefs

Programs

  • Mathematica
    T[0, 0] := 1; T[1, 0] := 2; T[1, 1] := 0; T[n_, k_] := T[n, k] = If[n<0, 0, If[k > n, 0, T[n - 1, k] + T[n - 2, k] + T[n - 2, k - 1]]]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 19 2017 *)

Formula

G.f.: (1+x)/(1-x-(1+y)*x^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.

A236076 A skewed version of triangular array A122075.

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 3, 5, 0, 0, 1, 7, 8, 0, 0, 0, 4, 15, 13, 0, 0, 0, 1, 12, 30, 21, 0, 0, 0, 0, 5, 31, 58, 34, 0, 0, 0, 0, 1, 18, 73, 109, 55, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144, 0, 0, 0, 0, 0, 0, 7, 85, 361
Offset: 0

Views

Author

Philippe Deléham, Jan 19 2014

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Subtriangle of the triangle A122950.

Examples

			Triangle begins:
  1;
  0,  2;
  0,  1,  3;
  0,  0,  3,  5;
  0,  0,  1,  7,  8;
  0,  0,  0,  4, 15, 13;
  0,  0,  0,  1, 12, 30, 21;
  0,  0,  0,  0,  5, 31, 58, 34;
		

Crossrefs

Cf. variant: A055830, A122075, A122950, A208337.
Cf. A167704 (diagonal sums), A000079 (row sums).
Cf. A111006.

Programs

  • Haskell
    a236076 n k = a236076_tabl !! n !! k
    a236076_row n = a236076_tabl !! n
    a236076_tabl = [1] : [0, 2] : f [1] [0, 2] where
       f us vs = ws : f vs ws where
         ws = [0] ++ zipWith (+) (zipWith (+) ([0] ++ us) (us ++ [0])) vs
    -- Reinhard Zumkeller, Jan 19 2014
    
  • Mathematica
    T[n_, k_]:= If[k<0 || k>n, 0, If[n==0 && k==0, 1, If[k==0, 0, If[n==1 && k==1, 2, T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]]]]]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 21 2019 *)
  • PARI
    {T(n,k) = if(k<0 || k>n, 0, if(n==0 && k==0, 1, if(k==0, 0, if(n==1 && k==1, 2, T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) ))))}; \\ G. C. Greubel, May 21 2019
    
  • Sage
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        elif (k==0): return 0
        elif (n==1 and k==1): return 2
        else: return T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 21 2019

Formula

G.f.: (1+x*y)/(1 - x*y - x^2*y - x^2*y^2).
T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2), T(0,0)=1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k < 0 or if k > n.
Sum_{k=0..n} T(n,k) = 2^n = A000079(n).
Sum_{n>=k} T(n,k) = A078057(k) = A001333(k+1).
T(n,n) = Fibonacci(n+2) = A000045(n+2).
T(n+1,n) = A023610(n-1), n >= 1.
T(n+2,n) = A129707(n).
Previous Showing 11-19 of 19 results.