cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A372923 Number of diagonalized cyclic diagonal Latin squares of order 2n+1 with the first row in order.

Original entry on oeis.org

1, 0, 4, 32, 6144, 1152000, 45984153600000
Offset: 0

Views

Author

Eduard I. Vatutin, May 16 2024

Keywords

Comments

See Comments in A372922.

Crossrefs

Formula

a(n) = A372922(n) / (2n+1)!. - Eduard I. Vatutin, Sep 08 2024

A343866 Number of inequivalent cyclic diagonal Latin squares of order 2n+1 up to rotations, reflections and permutation of symbols.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 3, 0, 4, 4, 0, 5, 3, 0, 7, 7, 0, 2, 9, 0, 10, 10, 0, 11, 7, 0, 13, 4, 0, 14, 15, 0, 6, 16, 0, 17, 18, 0, 8, 19, 0, 20, 8, 0, 22, 10, 0, 8, 24, 0, 25, 25, 0, 26, 27, 0, 28, 10, 0, 14, 22, 0, 13, 31, 0, 32, 16, 0, 34, 34, 0, 20, 14, 0, 37, 37, 0, 14, 39, 0, 20
Offset: 0

Views

Author

Andrew Howroyd, May 02 2021

Keywords

Comments

Also the number of main classes of diagonal Latin squares of order 2n+1 that contain a cyclic Latin square. Compare A341585.

Examples

			a(12) = 3 since there are A123565(25) = 10 cyclic diagonal Latin squares whose first row is in ascending order. Each of these is uniquely defined by the step between rows and form 5 pairs by horizontal or vertical reflection (negating the step between rows). Up to exchanging rows with columns there are 3 distinct classes, so a(12) = 3.
		

Crossrefs

Programs

  • PARI
    iscanon(n,k,g) = k <= vecmin(g*k%n) && k <= vecmin(g*lift(1/Mod(k,n))%n)
    a(n)={if(n==0, 1, my(m=2*n+1); sum(k=1, m-1, gcd(m,k)==1 && gcd(m,k-1)==1 && gcd(m,k+1)==1 && iscanon(m, k, [1,-1])))}

Formula

a((p-1)/2) = A341585((p-1)/2) for odd prime p.

A366331 Number of main classes of diagonal Latin squares of order 2n+1 that contain a horizontally semicyclic Latin square.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 20, 0, 272, 1208, 0, 127334, 1958084, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Oct 07 2023

Keywords

Comments

A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example).

Examples

			Example of horizontally semicyclic diagonal Latin square of order 13:
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
		

Crossrefs

Extensions

a(11)-a(13) from Andrew Howroyd, Nov 02 2023

A370672 Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board using knight moves.

Original entry on oeis.org

1, 0, 10, 28, 0, 88, 130, 0, 238, 304, 0, 460, 250, 0, 754, 868, 0, 280, 1258, 0, 1558, 1720, 0, 2068, 1372, 0, 2650, 880, 0, 3304, 3538, 0, 1300, 4288, 0, 4828, 5110, 0, 2464, 6004, 0, 6640, 2380, 0, 7654, 3640, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Feb 25 2024

Keywords

Comments

All solutions of this type can be found using a knight moving with some displacements dx and dy starting from some cell with coordinates (x,y): (x,y) -> (x+dx,y+dy) -> (x+2*dx,y+2*dy) -> ... -> (x,y) (all operations modulo n). For n <= 11 all solutions of n nonattacking queens on n X n a toroidal board problem are solutions of this type, for n >= 13 some solutions are not of this type (see A051906 for examples).

Examples

			For n=2*2+1=5 there are 10 solutions:
.
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |
| . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |
| . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |
| . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
.
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |
| . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |
| . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |
| Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
.
so a(2)=10.
		

Crossrefs

Formula

a(n) = A123565(2*n+1) * (2*n+1).
a(n) = A338562(n) / (2n)!. - Eduard I. Vatutin, Mar 13 2024
Previous Showing 11-14 of 14 results.