cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A126912 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^15 is prime.

Original entry on oeis.org

17, 47, 71, 72, 95, 99, 107, 113, 123, 134, 135, 147, 159, 239, 257, 261, 263, 278, 299, 324, 348, 435, 477, 500, 521, 534, 536, 546, 563, 567, 585, 633, 635, 642, 716, 737, 750, 753, 852, 905, 974, 1088, 1178, 1181, 1205, 1272, 1283, 1298, 1311, 1331, 1356
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^15], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^15) \\ Charles R Greathouse IV, Jun 13 2017

A126913 Numbers n such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^17 is prime.

Original entry on oeis.org

2, 22, 38, 102, 128, 130, 172, 232, 250, 292, 378, 404, 424, 458, 472, 490, 510, 600, 608, 702, 774, 802, 868, 888, 938, 950, 1010, 1140, 1204, 1220, 1274, 1294, 1328, 1372, 1394, 1398, 1402, 1412, 1418, 1502, 1564, 1580, 1602, 1670, 1692, 1792, 1800
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^17], AppendTo[a, n]], {n, 1, 1400}]; a
    Select[Range[2000],PrimeQ[Total[#^{0,2,4,6,8,10,12,14,16,17}]]&] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^17) \\ Charles R Greathouse IV, Jun 13 2017

A126914 Numbers n such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^18 + k^19 is prime.

Original entry on oeis.org

1, 9, 37, 40, 60, 69, 85, 114, 147, 156, 174, 183, 255, 289, 312, 324, 336, 349, 361, 373, 418, 451, 493, 499, 511, 520, 534, 549, 649, 657, 673, 676, 715, 741, 787, 855, 862, 874, 883, 888, 897, 952, 960, 1021, 1087, 1092, 1104, 1126, 1141, 1147, 1171, 1209
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^18 + n^19], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^18+n^19) \\ Charles R Greathouse IV, Jun 13 2017

A126915 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^14 + k^16 + k^18 + k^20 + k^21 is prime.

Original entry on oeis.org

2, 6, 12, 60, 68, 138, 270, 446, 488, 620, 656, 798, 872, 942, 950, 1136, 1140, 1256, 1400, 1418, 1506, 1638, 1776, 1922, 1992, 2070, 2082, 2096, 2220, 2346, 2462, 2580, 2606, 2916
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Magma
    [k:k in [1..3000]| IsPrime(1+k^2+k^4+k^6+k^8+k^10+k^12+k^14+k^16+ k^18+k^20 +k^21)]; // Marius A. Burtea, Feb 11 2020
  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^14 + n^16 + n^18 + n^20 + n^21], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^14+n^16+n^18+n^20+n^21) \\ Charles R Greathouse IV, Jun 13 2017
    

A126018 Smallest prime of the form 1 + Sum{j=1..n} k^(2*j-1).

Original entry on oeis.org

2, 3, 43, 5, 683, 7, 10101010101011, 43691, 174763, 11, 2796203, 13, 1074532291189456211731158116986854092943409, 10518179715343122711873674826619717982095485405484801996888751, 715827883, 17, 47765234780450752737667634787440955821061405946096137816061
Offset: 1

Views

Author

Artur Jasinski, Dec 14 2006

Keywords

Comments

Primes arising in A124151.
If n=(prime number-1) then a(n) = prime(n). - Artur Jasinski, Dec 23 2006

Examples

			Consider n = 8. 1 + Sum{j=1...8} k^(2*j-1) evaluates to 9 for k = 1 and to 43691 for k = 2. 9 is composite but 43691 is prime, hence a(8) = 1+2+2^3+2^5+2^7+2^9+2^11+2^13+2^15 = 43691.
		

Crossrefs

Programs

  • Mathematica
    Table[k=0; Until[PrimeQ[p=1+Sum[k^(2j-1),{j,n}]], k++]; p, {n, 17}] (* James C. McMahon, Dec 23 2024 *)
  • PARI
    {for(n=1,14,k=1;while(!isprime(s=1+sum(j=1,n,k^(2*j-1))),k++);print1(s,","))} \\ Klaus Brockhaus, Dec 16 2006

Extensions

Edited and extended by Klaus Brockhaus, Dec 16 2006
a(15)-a(17) from James C. McMahon, Dec 23 2024
Previous Showing 11-15 of 15 results.