cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A343671 Number of partitions of an n-set without blocks of size 10.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678559, 4213465, 27643007, 190884307, 1382802389, 10478516523, 82847813908, 681895648039, 5830788687491, 51702731250650, 474630475600569, 4503991075480297, 44120379612630694, 445584481578266277, 4634070027874688433
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
           j=10, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 25 2023
  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^10/10!], {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(-1)^k BellB[n - 10 k]/((n - 10 k)! k! (10!)^k), {k, 0, Floor[n/10]}], {n, 0, 25}]
    a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 10, 0, Binomial[n - 1, k - 1]  a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: exp(exp(x) - 1 - x^10/10!).
a(n) = n! * Sum_{k=0..floor(n/10)} (-1)^k * Bell(n-10*k) / ((n-10*k)! * k! * (10!)^k).

A346272 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( BesselI(0,2*sqrt(x)) - 1 - x^3 / 36 ).

Original entry on oeis.org

1, 1, 3, 15, 115, 1196, 16282, 276158, 5713507, 140482000, 4047179258, 134447125418, 5097852537802, 218254682152053, 10469861372693621, 558373926672949031, 32908746221003292003, 2130712239317226923136, 150826951188229240683858, 11618459541824256750732794
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]] - 1 - x^3/36], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = a[1] = 1; a[n_] := a[n] = n a[n - 1] + n (n - 1)^2 a[n - 2]/2 + (1/n) Sum[Binomial[n, k]^2 k a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 19}]

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( x + x^2 / 4 + Sum_{n>=4} x^n / (n!)^2 ).
a(0) = a(1) = 1; a(n) = n * a(n-1) + n * (n-1)^2 * a(n-2) / 2 + (1/n) * Sum_{k=4..n} binomial(n,k)^2 * k * a(n-k).

A361531 Expansion of e.g.f. exp(1 - exp(x) + x^3/6).

Original entry on oeis.org

1, -1, 0, 2, -3, -2, 21, -44, -62, 631, -1367, -3170, 34849, -86855, -302964, 3058342, -8509971, -36488802, 430842051, -1111575888, -6244999438, 78663444549, -250850311489, -1724880111306, 18475299723737, -65061274823853, -444914618968648, 6831921081061986
Offset: 0

Views

Author

Seiichi Manyama, Mar 14 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(1-exp(x)+x^3/6)))

Formula

a(0) = 1, a(1) = -1, a(2) = 0; a(n) = binomial(n-1,2) * a(n-3) - Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).
Previous Showing 11-13 of 13 results.