cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A292419 a(n) = [x^n] Product_{k>=1} (1 + n*x^k) / (1 - n*x^k).

Original entry on oeis.org

1, 2, 12, 96, 872, 9960, 138180, 2298016, 44686224, 995739498, 24993249820, 697309946784, 21396151468536, 715827315312200, 25926440773118340, 1010478298772398080, 42162515927954808352, 1875027040759682964144, 88527520717734462201756, 4422273966757678408594560
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Comments

Convolution of A291698 and A124577.

Crossrefs

Programs

  • Mathematica
    nmax = 25; Table[SeriesCoefficient[Product[(1+n*x^k)/(1-n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, ((1+n*x^k)/(1-n*x^k) +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

a(n) ~ 2 * n^n * (1 + 2/n + 4/n^2 + 8/n^3 + 14/n^4 + 24/n^5 + 40/n^6 + 64/n^7 + 100/n^8 + 154/n^9 + 232/n^10), for coefficients see A015128.

A124578 Define p(alpha,2) to be the number of H-conjugacy classes where H is an infant subgroup ( similar to Young subgroups of S_n) of type alpha of the hyperoctahedral group B_n. Then a(n) = sum p(alpha,2) where |alpha| = n and alpha has at most n parts.

Original entry on oeis.org

2, 16, 150, 1784, 25460
Offset: 1

Views

Author

Richard Bayley (r.t.bayley(AT)qmul.ac.uk), Nov 12 2006

Keywords

Comments

p((n,0),2) = A000712. B_n can also be thought of as the signed permutation group. B_3 acts on the alphabet {1,2,3,bar{1}, bar{2}, bar{3}}. An infant subgroup of type (2,1) will be the subgroup which stabilizes the sets {1,bar{1}, 2, bar{2}} and {3,bar{3}}.

Examples

			E.g p((2,1),2) = # H-conjugacy classes of B_3 where H = Inft((2,1)) isom B_2 times B_1 . Then a(3) = p((3),2) + p((2,1),2) + p((2,0,1),2) + p((1,2),2) + p((1,1,1),2)+ p((1,0,2),2)+ p((0,3),2) + p((0,2,1),2) + p((0,1,2),2) + p((0,0,3),2) =10 + 16 + 16 + 16 + 24 + 16 + 10 + 16 + 16 +10 = 150
		

References

  • Richard Bayley, Relative Character Theory and the Hyperoctahedral Group, Ph.D. thesis, Queen Mary College, University of London, to be published 2007.
  • Steve Donkin, Invariant functions on Matrices, Math. Proc. Camb. Phil. Soc. 113 (1993) 23-43.

Crossrefs

Formula

Let x = x_1x_2x_3... and x^alpha = x_1^(alpha_1)x_2^(alpha_2)x_3^(alpha_3).... Let Phi = set of all primitive necklaces. If b is a primitive necklace then C(b) = Content(b) = (beta_1, beta_2,beta_3,.....) where beta_i = the number of times i occurs in b. For example if b=[11233] then C(b) = (2,1,2). To generate the p(alpha,2) we do the following. sum_alpha p(alpha,2)x^alpha = prod_(b in Phi) prod_(k = 1)^infinity 1/(1- x^(C(b) times k ))^2 = prod_(b in Phi) prod_(k = 1)^infinity (1+ x^(k times C(b)) + x^(2k times C(b)) + x^(3k times C(b)) + ....)^2

A303914 a(n) = [x^n] (1/(1 - x))*Product_{k>=1} 1/(1 - n*x^k).

Original entry on oeis.org

1, 2, 9, 55, 465, 5051, 69265, 1147287, 22307905, 497211049, 12484203601, 348391613615, 10691846920081, 357749800027465, 12958472141161457, 505088781523073326, 21076091000708067585, 937322034938743608556, 44256147057318887809993, 2210813717869831566759857, 116492226446226314836976401
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    a:= n-> add(b(j$2, n), j=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 02 2018
  • Mathematica
    Table[SeriesCoefficient[1/(1 - x) Product[1/(1 - n x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[1/(1 - x) Exp[Sum[n^k x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 20}]

Formula

a(n) = [x^n] (1/(1 - x))*exp(Sum_{k>=1} n^k*x^k/(k*(1 - x^k))).
a(n) = Sum_{j=0..n} A246935(j,n).
a(n) ~ n^n. - Vaclav Kotesovec, May 04 2018

A302836 a(n) = [x^n] Product_{k>=1} 1/(1 - n*x^(k^2)).

Original entry on oeis.org

1, 1, 4, 27, 260, 3150, 46872, 825944, 16810048, 387952668, 10010010100, 285526191874, 8921263237056, 303013028232642, 11116057874586840, 438023675344410000, 18451248777413066768, 827408674110381669305, 39353155876513869320412, 1978708139249503877752798
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - n x^k^2), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ n^n * (1 + 1/n^3 + 1/n^6 + 1/n^8 + 1/n^9 + 1/n^11 + 1/n^12 + 1/n^14 + 2/n^15 + 1/n^16 + 1/n^17 + 2/n^18 + 1/n^19 + 1/n^20 + 2/n^21 + 1/n^22 + 2/n^23 + 4/n^24 + 1/n^25 + 2/n^26 + 4/n^27 + 1/n^28 + 2/n^29 + 5/n^30 + ...), for coefficients see A111178. - Vaclav Kotesovec, Apr 13 2018

A302837 a(n) = [x^n] Product_{k>=1} 1/(1 - n*x^prime(k)).

Original entry on oeis.org

1, 0, 2, 3, 16, 30, 252, 399, 4672, 8100, 111200, 193006, 3279888, 5631093, 114137072, 196030350, 4600308224, 7873377297, 210745840824, 359490499457, 10808589776800, 18389567969010, 613522956193532, 1041400845949218, 38179982045681856, 64675343605547500, 2584515863960831060
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - n x^Prime[k]), {k, 1, n}], {x, 0, n}], {n, 0, 26}]
Previous Showing 11-15 of 15 results.