cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 60 results. Next

A374683 Irregular triangle read by rows where row n lists the leaders of strictly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 3, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal strictly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)), so row 1234567 is (3,2,1,2,1,1,1,1).
The nonnegative integers, corresponding compositions, and leaders of strictly increasing runs begin:
   0:      () -> ()         15: (1,1,1,1) -> (1,1,1,1)
   1:     (1) -> (1)        16:       (5) -> (5)
   2:     (2) -> (2)        17:     (4,1) -> (4,1)
   3:   (1,1) -> (1,1)      18:     (3,2) -> (3,2)
   4:     (3) -> (3)        19:   (3,1,1) -> (3,1,1)
   5:   (2,1) -> (2,1)      20:     (2,3) -> (2)
   6:   (1,2) -> (1)        21:   (2,2,1) -> (2,2,1)
   7: (1,1,1) -> (1,1,1)    22:   (2,1,2) -> (2,1)
   8:     (4) -> (4)        23: (2,1,1,1) -> (2,1,1,1)
   9:   (3,1) -> (3,1)      24:     (1,4) -> (1)
  10:   (2,2) -> (2,2)      25:   (1,3,1) -> (1,1)
  11: (2,1,1) -> (2,1,1)    26:   (1,2,2) -> (1,2)
  12:   (1,3) -> (1)        27: (1,2,1,1) -> (1,1,1)
  13: (1,2,1) -> (1,1)      28:   (1,1,3) -> (1,1)
  14: (1,1,2) -> (1,1)      29: (1,1,2,1) -> (1,1,1)
		

Crossrefs

Row-leaders are A065120.
Row-lengths are A124768.
Other types of runs: A374251, A374515, A374740.
The weak version is A374629, sum A374630, length A124766.
Row-sums are A374684.
Positions of identical rows are A374685, counted by A374686.
Positions of distinct (strict) rows are A374698, counted by A374687.
The opposite version is A374757, sum A374758, length A124769.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124767, A333381.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],Less],{n,0,100}]

A374740 Irregular triangle read by rows where row n lists the leaders of weakly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 2, 1, 4, 3, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 4, 3, 3, 2, 3, 2, 2, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 5, 1, 4, 1, 3, 1, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 1, 4
Offset: 0

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so row 1234567 is (3,2,2,5).
The nonnegative integers, corresponding compositions, and leaders of weakly decreasing runs begin:
    0: () -> ()           15: (1,1,1,1) -> (1)
    1: (1) -> (1)         16: (5) -> (5)
    2: (2) -> (2)         17: (4,1) -> (4)
    3: (1,1) -> (1)       18: (3,2) -> (3)
    4: (3) -> (3)         19: (3,1,1) -> (3)
    5: (2,1) -> (2)       20: (2,3) -> (2,3)
    6: (1,2) -> (1,2)     21: (2,2,1) -> (2)
    7: (1,1,1) -> (1)     22: (2,1,2) -> (2,2)
    8: (4) -> (4)         23: (2,1,1,1) -> (2)
    9: (3,1) -> (3)       24: (1,4) -> (1,4)
   10: (2,2) -> (2)       25: (1,3,1) -> (1,3)
   11: (2,1,1) -> (2)     26: (1,2,2) -> (1,2)
   12: (1,3) -> (1,3)     27: (1,2,1,1) -> (1,2)
   13: (1,2,1) -> (1,2)   28: (1,1,3) -> (1,3)
   14: (1,1,2) -> (1,2)   29: (1,1,2,1) -> (1,2)
		

Crossrefs

Row-leaders are A065120.
Row-lengths are A124765.
Other types of runs are A374251, A374515, A374683, A374757.
The opposite is A374629.
Positions of distinct (strict) rows are A374701, counted by A374743.
Row-sums are A374741, opposite A374630.
Positions of identical rows are A374744, counted by A374742.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],GreaterEqual],{n,0,100}]

A374515 Irregular triangle read by rows where row n lists the leaders of anti-runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 1, 3, 3, 3, 3, 3, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2024

Keywords

Comments

Anti-runs summing to n are counted by A003242(n).
The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal anti-runs of the 1234567th composition in standard order are ((3,2,1,2),(2,1,2,5,1),(1),(1)), so row 1234567 is (3,2,1,1).
The nonnegative integers, corresponding compositions, and leaders of anti-runs begin:
    0:      () -> ()        15: (1,1,1,1) -> (1,1,1,1)
    1:     (1) -> (1)       16:       (5) -> (5)
    2:     (2) -> (2)       17:     (4,1) -> (4)
    3:   (1,1) -> (1,1)     18:     (3,2) -> (3)
    4:     (3) -> (3)       19:   (3,1,1) -> (3,1)
    5:   (2,1) -> (2)       20:     (2,3) -> (2)
    6:   (1,2) -> (1)       21:   (2,2,1) -> (2,2)
    7: (1,1,1) -> (1,1,1)   22:   (2,1,2) -> (2)
    8:     (4) -> (4)       23: (2,1,1,1) -> (2,1,1)
    9:   (3,1) -> (3)       24:     (1,4) -> (1)
   10:   (2,2) -> (2,2)     25:   (1,3,1) -> (1)
   11: (2,1,1) -> (2,1)     26:   (1,2,2) -> (1,2)
   12:   (1,3) -> (1)       27: (1,2,1,1) -> (1,1)
   13: (1,2,1) -> (1)       28:   (1,1,3) -> (1,1)
   14: (1,1,2) -> (1,1)     29: (1,1,2,1) -> (1,1)
		

Crossrefs

Row-leaders of nonempty rows are A065120.
Row-lengths are A333381.
Row-sums are A374516.
Positions of identical rows are A374519 (counted by A374517).
Positions of distinct (strict) rows are A374638 (counted by A374518).
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression is A373948 or A374251, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],UnsameQ],{n,0,100}]

A374768 Numbers k such that the leaders of weakly increasing runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 52, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81
Offset: 1

Views

Author

Gus Wiseman, Jul 19 2024

Keywords

Comments

First differs from A335467 in having 166, corresponding to the composition (2,3,1,2).
The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 4444th composition in standard order is (4,2,2,1,1,3), with weakly increasing runs ((4),(2,2),(1,1,3)), with leaders (4,2,1), so 4444 is in the sequence.
		

Crossrefs

These are the positions of strict rows in A374629 (which has sums A374630).
Compositions of this type are counted by A374632, increasing A374634.
Identical instead of distinct leaders are A374633, counted by A374631.
For leaders of anti-runs we have A374638, counted by A374518.
For leaders of strictly increasing runs we have A374698, counted by A374687.
For leaders of weakly decreasing runs we have A374701, counted by A374743.
For leaders of strictly decreasing runs we have A374767, counted by A374761.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Ones are counted by A000120.
- Sum is A029837 (or sometimes A070939).
- Parts are listed by A066099.
- Length is A070939.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of strict compositions are A233564.
- Ranks of constant compositions are A272919.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,166],UnsameQ@@First/@Split[stc[#],LessEqual]&]

A258026 Numbers k such that prime(k+2) - 2*prime(k+1) + prime(k) < 0.

Original entry on oeis.org

4, 6, 9, 11, 12, 16, 18, 19, 21, 24, 25, 27, 30, 32, 34, 37, 40, 42, 44, 47, 48, 51, 53, 56, 58, 59, 62, 63, 66, 68, 72, 74, 77, 80, 82, 84, 87, 88, 91, 92, 94, 97, 99, 101, 103, 106, 108, 111, 112, 114, 115, 119, 121, 125, 127, 128, 130, 132, 133, 135, 137
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2015

Keywords

Comments

Positions of strict descents in the sequence of differences between primes. Partial sums of A333215. - Gus Wiseman, Mar 24 2020

Examples

			The prime gaps split into the following maximal weakly increasing subsequences: (1,2,2,4), (2,4), (2,4,6), (2,6), (4), (2,4,6,6), (2,6), (4), (2,6), (4,6,8), (4), (2,4), (2,4,14), ... Then a(n) is the n-th partial sum of the lengths of these subsequences. - _Gus Wiseman_, Mar 24 2020
		

Crossrefs

Partition of the positive integers: A064113, A258025, A258026;
Corresponding partition of the primes: A063535, A063535, A147812.
Adjacent terms differing by 1 correspond to strong prime quartets A054804.
The version for the Kolakoski sequence is A156242.
First differences are A333215 (if the first term is 0).
The version for strict ascents is A258025.
The version for weak ascents is A333230.
The version for weak descents is A333231.
Prime gaps are A001223.
Positions of adjacent equal prime gaps are A064113.
Weakly increasing runs of compositions in standard order are A124766.
Strictly decreasing runs of compositions in standard order are A124769.

Programs

  • Mathematica
    u = Table[Sign[Prime[n+2] - 2 Prime[n+1] + Prime[n]], {n, 1, 200}];
    Flatten[Position[u, 0]]   (* A064113 *)
    Flatten[Position[u, 1]]   (* A258025 *)
    Flatten[Position[u, -1]]  (* A258026 *)
    Accumulate[Length/@Split[Differences[Array[Prime,100]],LessEqual]]//Most (* Gus Wiseman, Mar 24 2020 *)
  • Python
    from itertools import count, islice
    from sympy import prime, nextprime
    def A258026_gen(startvalue=1): # generator of terms >= startvalue
        c = max(startvalue,1)
        p = prime(c)
        q = nextprime(p)
        r = nextprime(q)
        for k in count(c):
            if p+r<(q<<1):
                yield k
            p, q, r = q, r, nextprime(r)
    A258026_list = list(islice(A258026_gen(),20)) # Chai Wah Wu, Feb 27 2024

A374630 Sum of leaders of weakly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 1, 1, 4, 4, 2, 3, 1, 2, 1, 1, 5, 5, 5, 4, 2, 3, 3, 3, 1, 2, 1, 2, 1, 2, 1, 1, 6, 6, 6, 5, 3, 6, 4, 4, 2, 3, 2, 3, 3, 4, 3, 3, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 7, 7, 7, 6, 7, 7, 5, 5, 3, 4, 5, 6, 4, 5, 4, 4, 2, 3, 4, 3, 2, 3, 3
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2,2),(1,2,5),(1,1,1)), so a(1234567) = 8.
		

Crossrefs

For length instead of sum we have A124766.
For leaders of constant runs we have A373953, excess A373954.
For leaders of anti-runs we have A374516.
Row-sums of A374629.
Counting compositions by this statistic gives A374637.
For leaders of strictly increasing runs we have A374684.
For leaders of weakly decreasing runs we have A374741.
For leaders of strictly decreasing runs we have A374758
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
All of the following pertain to compositions in standard order:
- Ones are counted by A000120.
- Sum is A029837 (or sometimes A070939).
- Listed by A066099.
- Length is A070939.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of strict compositions are A233564, counted by A032020.
- Constant compositions are ranked by A272919.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],LessEqual]],{n,0,100}]

A233249 a(1)=0; for k >= 1, let prime(k) map to 10...0 with k-1 zeros and let prime(k)*prime(m) map to the concatenation in binary of 2^(k-1) and 2^(m-1). For n >= 2, let the prime power factorization of n be mapped to r(n). a(n) is the term in A114994 which is c-equivalent to r(n) (see there our comment).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 10, 9, 16, 11, 32, 17, 18, 15, 64, 21, 128, 19, 34, 33, 256, 23, 36, 65, 42, 35, 512, 37, 1024, 31, 66, 129, 68, 43, 2048, 257, 130, 39, 4096, 69, 8192, 67, 74, 513, 16384, 47, 136, 73, 258, 131, 32768, 85, 132, 71, 514, 1025, 65536, 75
Offset: 1

Views

Author

Vladimir Shevelev, Dec 06 2013

Keywords

Comments

Let (10...0)_i (i>=0) denote 2^i in binary. Under (10...0)_i^k we understand a concatenation of (10...0)_i k times.
If n=Product_{i=1..m} p_i^t_i is the prime power factorization of n, then in the name r(n)=concatenation{i=1..m} ((10...0_(i-1)^t_i).
Numbers q and s are called c-equivalent if their binary expansions contain the same set of parts of the form 10...0. For example, 14=(1)(1)(10)~(10)(1)(1)=11.
Conversely, if n~n_1 such that n_1 is in A114994 and has c-factorization: n_1 = concatenation{i=m,...,0} ((10...0)i^t_i), one can consider "converse" sequence {s(n)}, where s(n) = Product{i=m..0} p_(i+1)^t_i.
For example, for n=22, n_1=21=((10)^2)(1), and s(22)=3^2*2=18.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary binary expansion of k, prepending 0, taking first differences, and reversing again. Then a(n) is the number k such that the k-th composition in standard order consists of the prime indices of n in weakly decreasing order (the partition with Heinz number n). - Gus Wiseman, Apr 02 2020

Examples

			n=10=2*5 is mapped to (1)(100)~(100)(1). Since 9 is in A114994, then a(10)=9.
From _Gus Wiseman_, Apr 02 2020: (Start)
The sequence together with the corresponding compositions begins:
   0: ()             128: (8)             2048: (12)
   1: (1)             19: (3,1,1)          257: (8,1)
   2: (2)             34: (4,2)            130: (6,2)
   3: (1,1)           33: (5,1)             39: (3,1,1,1)
   4: (3)            256: (9)             4096: (13)
   5: (2,1)           23: (2,1,1,1)         69: (4,2,1)
   8: (4)             36: (3,3)           8192: (14)
   7: (1,1,1)         65: (6,1)             67: (5,1,1)
  10: (2,2)           42: (2,2,2)           74: (3,2,2)
   9: (3,1)           35: (4,1,1)          513: (9,1)
  16: (5)            512: (10)           16384: (15)
  11: (2,1,1)         37: (3,2,1)           47: (2,1,1,1,1)
  32: (6)           1024: (11)             136: (4,4)
  17: (4,1)           31: (1,1,1,1,1)       73: (3,3,1)
  18: (3,2)           66: (5,2)            258: (7,2)
  15: (1,1,1,1)      129: (7,1)            131: (6,1,1)
  64: (7)             68: (4,3)          32768: (16)
  21: (2,2,1)         43: (2,2,1,1)         85: (2,2,2,1)
For example, the Heinz number of (2,2,1) is 18, and the 21st composition in standard order is (2,2,1), so a(18) = 21.
(End)
		

Crossrefs

The sorted version is A114994.
The primorials A002110 map to A246534.
A partial inverse is A333219.
The reversed version is A333220.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[2^Accumulate[primeMS[n]]]/2,{n,100}] (* Gus Wiseman, Apr 02 2020 *)

Formula

A059893(a(n)) = A333220(n). A124767(a(n)) = A001221(n). - Gus Wiseman, Apr 02 2020

Extensions

More terms from Peter J. C. Moses, Dec 07 2013

A374757 Irregular triangle read by rows where row n lists the leaders of strictly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 5, 4, 3, 3, 1, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 4, 1, 3, 1, 2, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 5, 4, 4, 1, 3, 3, 3, 3, 2, 3, 1, 1, 2, 4, 2, 3
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			the 1234567th composition in standard order is (3,2,1,2,2,1,2,5,1,1,1), with strictly decreasing runs ((3,2,1),(2),(2,1),(2),(5,1),(1),(1)), so row 1234567 is (3,2,2,2,5,1,1).
The nonnegative integers, corresponding compositions, and leaders of strictly decreasing runs begin:
    0:      () -> ()        15: (1,1,1,1) -> (1,1,1,1)
    1:     (1) -> (1)       16:       (5) -> (5)
    2:     (2) -> (2)       17:     (4,1) -> (4)
    3:   (1,1) -> (1,1)     18:     (3,2) -> (3)
    4:     (3) -> (3)       19:   (3,1,1) -> (3,1)
    5:   (2,1) -> (2)       20:     (2,3) -> (2,3)
    6:   (1,2) -> (1,2)     21:   (2,2,1) -> (2,2)
    7: (1,1,1) -> (1,1,1)   22:   (2,1,2) -> (2,2)
    8:     (4) -> (4)       23: (2,1,1,1) -> (2,1,1)
    9:   (3,1) -> (3)       24:     (1,4) -> (1,4)
   10:   (2,2) -> (2,2)     25:   (1,3,1) -> (1,3)
   11: (2,1,1) -> (2,1)     26:   (1,2,2) -> (1,2,2)
   12:   (1,3) -> (1,3)     27: (1,2,1,1) -> (1,2,1)
   13: (1,2,1) -> (1,2)     28:   (1,1,3) -> (1,1,3)
   14: (1,1,2) -> (1,1,2)   29: (1,1,2,1) -> (1,1,2)
		

Crossrefs

Row-leaders of nonempty rows are A065120.
Row-lengths are A124769.
The opposite version is A374683, sum A374684, length A124768.
The weak version is A374740, sum A374741, length A124765.
Row-sums are A374758.
Positions of identical rows are A374759 (counted by A374760).
Positions of distinct (strict) rows are A374767 (counted by A374761).
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],Greater],{n,0,100}]

A164894 Base-10 representation of the binary string formed by appending 10, 100, 1000, 10000, ..., etc., to 1.

Original entry on oeis.org

1, 6, 52, 840, 26896, 1721376, 220336192, 56406065280, 28879905423616, 29573023153783296, 60565551418948191232, 248076498612011791288320, 2032242676629600594233921536, 33296264013899376135928570454016, 1091051979207454757222107396637212672
Offset: 1

Views

Author

Gil Broussard, Aug 29 2009

Keywords

Comments

These numbers are half the sum of powers of 2 indexed by differences of a triangular number and each smaller triangular number (e.g., 21 - 15 = 6, 21 - 10 = 11, ..., 21 - 0 = 21).
This suggests another way to think about these numbers: consider the number triangle formed by the characteristic function of the triangular numbers (A010054), join together the first n rows (the very first row is row 0) as a single binary string and that gives the (n + 1)th term of this sequence. - Alonso del Arte, Nov 15 2013
Numbers k such that the k-th composition in standard order (row k of A066099) is an initial interval. - Gus Wiseman, Apr 02 2020

Examples

			a(1) = 1, also 1 in binary.
a(2) = 6, or 110 in binary.
a(3) = 52, or 110100 in binary.
a(4) = 840, or 1101001000 in binary.
		

Crossrefs

The version for prime (rather than binary) indices is A002110.
The non-strict generalization is A225620.
The reversed version is A246534.
Standard composition numbers of permutations are A333218.
Standard composition numbers of strict increasing compositions are A333255.

Programs

  • Mathematica
    Table[Sum[2^((n^2 + n)/2 - (k^2 + k)/2 - 1), {k, 0, n - 1}], {n, 25}] (* Alonso del Arte, Nov 14 2013 *)
    Module[{nn=15,t},t=Table[10^n,{n,0,nn}];Table[FromDigits[Flatten[IntegerDigits/@Take[t,k]],2],{k,nn}]] (* Harvey P. Dale, Jan 16 2024 *)
  • Python
    def a(n): return int("".join("1"+"0"*i for i in range(n)), 2)
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Jul 05 2021
    
  • Python
    def A164894(n): return sum(1<<(k*((n<<1)-k-1)>>1)+n-1 for k in range(n)) # Chai Wah Wu, Jul 11 2025

Formula

a(n) = Sum_{k=0..n-1} 2^((n^2 + n)/2 - (k^2 + k)/2 - 1). - Alonso del Arte, Nov 15 2013
Intersection of A333255 and A333217. - Gus Wiseman, Apr 02 2020
a(n) = Sum_{k=0..n-1} 2^(k*(2*n-k-1)/2+n-1). - Chai Wah Wu, Jul 11 2025

A374698 Numbers k such that the leaders of strictly increasing runs in the k-th composition in standard order are distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 16, 17, 18, 20, 22, 24, 26, 32, 33, 34, 37, 38, 40, 41, 44, 48, 50, 52, 64, 65, 66, 68, 69, 70, 72, 76, 80, 81, 88, 96, 98, 100, 104, 128, 129, 130, 132, 133, 134, 137, 140, 144, 145, 148, 150, 152, 154, 160, 161, 164, 166, 176, 180
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal strictly increasing subsequences of the 212th composition in standard order are ((1,2),(2,3)), with leaders (1,2), so 212 is in the sequence.
The terms together with corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  12: (1,3)
  16: (5)
  17: (4,1)
  18: (3,2)
  20: (2,3)
  22: (2,1,2)
  24: (1,4)
  26: (1,2,2)
		

Crossrefs

Positions of distinct (strict) rows in A374683.
For identical leaders we have A374685, counted by A374761.
Compositions of this type are counted by A374687.
The opposite version is A374767, counted by A374760.
The weak version is A374768, counted by A374632.
Other types of runs: A374249 (counts A274174), A374638 (counts A374518), A374701 (counts A374743).
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],Less]&]
Previous Showing 11-20 of 60 results. Next