cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A133862 Smallest odd prime base q such that p^12 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

12289, 1062881, 853235443, 92233439147, 3143820659087, 58713568184837, 2359162908109223, 2649283656602003, 53928980532177631, 557792163777408809, 2084452633098194627, 8958368398788306367, 15810453676175767201
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(12) = 12289.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^12 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A133863 Smallest odd prime base q such that p^13 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

40961, 19131877, 2441406251, 115385868869, 138090848575723, 358661570404751, 44510586506850631, 252317900773542353, 4465433274456775633, 39171440762351329829, 11887418854442931407, 14582408526413537791
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(13) = 40961.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^13 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A133864 Smallest odd prime base q such that p^14 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

65537, 19131877, 53834264557, 1356446145697, 488581592070877, 22771419458231473, 346100334752156863, 2467410166021233673, 19165875476832528551, 61879867860030528131, 1106827928513014993387
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(14) = 65537.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^14 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A133865 Smallest odd prime base q such that p^15 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

65537, 57395627, 122070312499, 56020344873707, 6266190914259137, 65106791321062951, 12132548193910221893, 50407811312994280933, 172048888780798211059, 16668261908754510204233, 35965174106571679882189
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(15) = 65537.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^15 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A249162 Square array A(p, b) read by antidiagonals in which rows are indexed by successive prime numbers p_i and row b(p_i) gives the smallest prime base b_n to which q = (p_i, b_(n-1)) is a Wieferich prime.

Original entry on oeis.org

2, 5, 3, 7, 17, 5, 19, 131, 7, 7, 127, 659, 19, 19, 11, 911, 503, 127, 127, 3, 13, 7331, 9833, 911, 911, 17, 19, 17, 167149, 49603, 7331, 7331, 131, 127, 131, 19, 387749, 327317, 167149, 167149, 659, 911, 659, 127, 23, 17153317, 13900147, 387749, 387749, 503
Offset: 1

Views

Author

Felix Fröhlich, Oct 22 2014

Keywords

Examples

			A(6,4) = 911, since the 6th prime is 13 and the smallest prime Wieferich base for 13 is 19. Applying this procedure recursively to the resulting bases a total of b-1 = 3 times leads to 911.
Array starts:
  2    5    7   19    127    911     7331   167149    387749  17153317 ...
  3   17  131  659    503   9833    49603   327317  13900147 144229223 ...
  5    7   19  127    911   7331   167149   387749  17153317       ...
  7   19  127  911   7331 167149   387749 17153317 432383657       ...
  11   3   17  131    659    503     9833    49603    327317       ...
  13  19  127  911   7331 167149   387749      ...
  17 131  659  503   9833  49603   327317      ...
  19 127  911 7331 167149 387749 17153317      ...
  23 263   79   31    229    503      ...
  29  41  313 1499    941  12011      ...
  ...
		

Crossrefs

Second column of table is A125636.

Programs

  • PARI
    forprime(p=1, 30, b=1; i=0; q=p; print1(p, ", "); while(i < 6, b++; if(Mod(b, q^2)^(q-1)==1 && isprime(b), print1(b, ", "); q=b; b=1; i++)); print(""))

A250206 Least base b > 1 such that b^A000010(n) = 1 (mod n^2).

Original entry on oeis.org

2, 5, 8, 7, 7, 17, 18, 15, 26, 7, 3, 17, 19, 19, 26, 31, 38, 53, 28, 7, 19, 3, 28, 17, 57, 19, 80, 19, 14, 107, 115, 63, 118, 65, 18, 53, 18, 69, 19, 7, 51, 19, 19, 3, 26, 63, 53, 17, 18, 57, 134, 19, 338, 161, 3, 31, 28, 41, 53, 107, 264, 115, 19, 127, 99, 161, 143, 65, 28, 99, 11, 55
Offset: 1

Views

Author

Eric Chen, Feb 21 2015

Keywords

Comments

a(n) = least base b > 1 such that n is a Wieferich number (see A077816).
At least, b = n^2+1 can satisfy this equation, so a(n) is defined for all n.
Least Wieferich number (>1) to base n: 2, 1093, 11, 1093, 2, 66161, 4, 3, 2, 3, 71, 2693, 2, 29, 4, 1093, 2, 5, 3, 281, 2, 13, 4, 5, 2, ...; each is a prime or 4. It is 4 if and only if n mod 72 is in the set {7, 15, 23, 31, 39, 47, 63}.
Does every natural number (>1) appear in this sequence? If yes, do they appear infinitely many times?
For prime n, a(n) = A185103(n), does there exist any composite n such that a(n) = A185103(n)?

Examples

			a(30) = 107 since A000010(30) = 8, 30^2 = 900, and 107 is the least base b > 1 such that b^8 = 1 (mod 900).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{b = 2, m = EulerPhi[n]}, While[ PowerMod[b, m, n^2] != 1, b++]; b]; f[1] = 2; Array[f, 72] (* Robert G. Wilson v, Feb 28 2015 *)
  • PARI
    a(n)=for(k=2,2^24,if((k^eulerphi(n))%(n^2)==1, return(k)))

Formula

a(prime(n)) = A039678(n) = A185103(prime(n)).
a(A077816(n)) = 2.
a(A242958(n)) <= 3.

A289379 Primes p that set a new record for the size of the smallest prime q such that q^(p-1) == 1 (mod p^2), i.e., such that p is a base-q Wieferich prime.

Original entry on oeis.org

2, 3, 7, 17, 23, 37, 67, 89, 139, 163, 269, 379, 439, 491, 691, 701, 877, 1009, 1327, 1427, 1669, 2687, 4973, 6367, 7603, 9277, 10531, 11047, 12071, 18313, 29389, 34471, 42703, 42961, 57731, 77773, 87299, 105517, 113957, 118369, 151303, 192631, 205603, 232091
Offset: 1

Views

Author

Felix Fröhlich, Sep 02 2017

Keywords

Comments

For n > 1, primes p such that A125636(i) reaches record values, where i is the index of p in A000040.

Crossrefs

Programs

  • PARI
    minprimb(n) = forprime(q=1, , if(Mod(q, n^2)^(n-1)==1, return(q)))
    my(r=0); forprime(p=1, , if(minprimb(p) > r, print1(p, ", "); r=minprimb(p)))

Extensions

a(37)-a(44) from Giovanni Resta, Sep 02 2017

A355658 Smallest prime base q such that q^(p-1) == 1 (mod p^2), where p = prime(n).

Original entry on oeis.org

5, 17, 7, 19, 3, 19, 131, 127, 263, 41, 229, 691, 313, 19, 53, 521, 53, 601, 1301, 11, 619, 31, 269, 3187, 53, 181, 43, 317, 499, 373, 911, 659, 19, 3659, 313, 751, 233, 4373, 3307, 419, 2591, 313, 1249, 2897, 349, 709, 331, 1973, 1933, 503, 821, 977, 2371, 263
Offset: 1

Views

Author

Felix Fröhlich, Jul 12 2022

Keywords

Comments

a(n) differs from A125636(n) if and only if p is a Wieferich prime (A001220). In particular, a(183) = 2 and A125636(183) = 18979. Similarly, a(490) = 2 and A125636(490) = 82183.

Crossrefs

Programs

  • PARI
    a(n) = my(p=prime(n)); forprime(q=1, , if(Mod(q, p^2)^(p-1)==1, return(q)))
Previous Showing 11-18 of 18 results.