cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A126040 a(n) is the largest prime < 12*a(n-1) for n > 1, with a(1) = 2.

Original entry on oeis.org

2, 23, 271, 3251, 38993, 467903, 5614831, 67377943, 808535311, 9702423659, 116429083879, 1397149006493, 16765788077893, 201189456934709, 2414273483216333, 28971281798595971, 347655381583151639, 4171864578997819661, 50062374947973835871, 600748499375686030387, 7208981992508232364591
Offset: 1

Views

Author

Artur Jasinski, Dec 16 2006

Keywords

Crossrefs

Cf. A126031.

Programs

  • Mathematica
    NestList[NextPrime[12#,-1]&,2,20] (* Harvey P. Dale, Oct 02 2011 *)

A229609 Array: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the greatest prime < 3*p.

Original entry on oeis.org

2, 5, 3, 13, 7, 11, 37, 19, 31, 17, 109, 53, 89, 47, 23, 317, 157, 263, 139, 67, 29, 947, 467, 787, 409, 199, 83, 41, 2837, 1399, 2357, 1223, 593, 241, 113, 43, 8501, 4177, 7069, 3659, 1777, 719, 337, 127, 59, 25471, 12527, 21193, 10973, 5323, 2153, 1009
Offset: 1

Views

Author

Clark Kimberling, Sep 26 2013

Keywords

Comments

Conjectures: (row 1) = A126031, (column 1) = A164952, and for each row r(k), the limit of r(k)/3^k exists. For rows 1 to 4, the respective limits are 0.431270..., 0.636059..., 3.229697..., 5.015914... .

Examples

			Northwest corner:
   2,  5,  13,  37,  109,  317, ...
   3,  7,  19,  53,  157,  467, ...
  11, 31,  89, 263,  787, 2357, ...
  17, 47, 139, 409, 1223, 3659, ...
  23, 67, 199, 593, 1777, 5323, ...
  29, 83, 241, 719, 2153, 6451, ...
		

Crossrefs

Programs

  • Mathematica
    seqL = 14; arr1[1] = {2}; Do[AppendTo[arr1[1], NextPrime[3*Last[arr1[1]], -1]], {seqL}];  Do[tmp = Union[Flatten[Map[arr1, Range[z]]]]; arr1[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr1[z], NextPrime[3*Last[arr1[z]], -1]], {seqL}], {z, 2, 22}]; m = Map[arr1, Range[22]]; m // TableForm
    t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)

Extensions

Incorrect comment deleted by Peter Munn, Aug 15 2017

A124368 Largest prime < 1000000*a(n-1), a(1)=2.

Original entry on oeis.org

2, 1999993, 1999992999889, 1999992999888999961, 1999992999888999960999949, 1999992999888999960999948999991, 1999992999888999960999948999990999917, 1999992999888999960999948999990999916999963, 1999992999888999960999948999990999916999962999947
Offset: 1

Views

Author

Artur Jasinski, Dec 16 2006

Keywords

Crossrefs

Programs

  • Mathematica
    NestList[NextPrime[1000000#,-1]&,2,10] (* Harvey P. Dale, Jul 21 2021 *)

Extensions

a(9) from Pontus von Brömssen, Jan 15 2025

A126034 a(n) is largest prime < 6*a(n-1) for n > 1 with a(1) = 2.

Original entry on oeis.org

2, 11, 61, 359, 2153, 12917, 77491, 464941, 2789629, 16737761, 100426553, 602559311, 3615355859, 21692135119, 130152810703, 780916864207, 4685501185193, 28113007111153, 168678042666907, 1012068256001351, 6072409536008087, 36434457216048503, 218606743296291011
Offset: 1

Views

Author

Artur Jasinski, Dec 16 2006

Keywords

Crossrefs

Cf. A124190(4*a(n-1)), A126031(3), A126033(5), A126035(7), A126036(8), A126037(9), A126039(11), A126040(12).

Programs

  • Mathematica
    Nest[Append[#,NextPrime[6Last[#], -1]]&,{2},22] (* James C. McMahon, Dec 24 2024 *)

A124387 Largest prime < 2*a(n-1) written in binary, a(1)=2.

Original entry on oeis.org

10, 11, 101, 111, 1101, 10111, 101011, 1010011, 10100011, 100111101, 1001110111, 10011101011, 100111000111, 1001110001011, 10011011110101, 100110111100001, 1001101110111101, 10011011101010011, 100110111010011101, 1001101110100011111, 10011011101000111011
Offset: 1

Views

Author

Artur Jasinski, Dec 16 2006

Keywords

Crossrefs

Programs

  • Mathematica
    NestList[FromDigits[IntegerDigits[NextPrime[FromDigits[IntegerDigits[ 2#], 2],-1],2]]&,10,20] (* Harvey P. Dale, Sep 26 2015 *)

Formula

a(n) = A007088(A006992(n)).

Extensions

Corrected and extended by Harvey P. Dale, Sep 26 2015
Previous Showing 11-15 of 15 results.