cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-59 of 59 results.

A138356 Moment sequence of t^2 coefficient in det(tI-A) for random matrix A in USp(4).

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 82, 268, 940, 3476, 13448, 53968, 223412, 949535, 4128594, 18310972, 82645012, 378851428, 1760998280, 8288679056, 39457907128, 189784872428, 921472827272, 4512940614960, 22279014978544, 110797225212112
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 17 2008

Keywords

Comments

Let the random variable X be the coefficient of t^2 in the characteristic polynomial det(tI-A) of a random matrix in USp(4) (4 X 4 complex matrices that are unitary and symplectic). Then a(n) = E[X^n].
Let L_p(T) be the L-polynomial (numerator of the zeta function) of a genus 2 curve C. Under a generalized Sato-Tate conjecture, for almost all C,
a(n) is the n-th moment of the coefficient of t^2 in L_p(t/sqrt(p)), as p varies.
See A095922 for central moments.

Examples

			a(3) = 4 because E[X^3] = 4 for X the t^2 coeff of det(tI-A) in USp(4).
a(3) = 1*2^3*(1*1-0^2) + 3*2^2*(0*0-1^2) + 3*2^1*(1*2-0^2) + 1*2^0*(0*0-2^2) = 8 - 12 + 12 - 4 = 4.
		

Crossrefs

Formula

a(n) = (1/2)Integral_{x=0..Pi,y=0..Pi}(4cos(x)cos(y)+2)^n(2cos(x)-2cos(y))^2(2/Pi*sin^2(x))(2/Pi*sin^2(y))dxdy.
a(n) = Sum_{i=0..n}binomial(n,i)2^{n-i}*(A126120(i)*A126120(i+2)-A126120(i+1)^2).

A302182 Number of 3D walks of type abc.

Original entry on oeis.org

1, 1, 5, 12, 62, 200, 1065, 3990, 21714, 89082, 492366, 2147376, 12004740, 54718092, 308559537, 1454116950, 8255788970, 39935276810, 227976044010, 1126178350440, 6457854821340, 32456552441040, 186814834574550, 952569927106980, 5500292590186380, 28391993275117500
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Python
    from math import comb as binomial
    def row(n: int) -> list[int]:
        return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))
    for n in range(26): print(row(n)) # Mélika Tebni, Nov 27 2024

Formula

From Mélika Tebni, Nov 27 2024: (Start)
a(n) = Sum_{k=0..n} binomial(n, k)*A126120(k)*A018224(n-k).
a(2*n+1) = A135394(n) / (2*n+2).
a(2*n) = A302181(n). (End)

Extensions

a(13)-a(25) from Mélika Tebni, Nov 27 2024

A302184 Number of 3D walks of type abe.

Original entry on oeis.org

1, 2, 7, 26, 108, 472, 2159, 10194, 49396, 244328, 1229308, 6273896, 32410096, 169181664, 891181607, 4731912082, 25302648644, 136150941064, 736747902236, 4007011320808, 21893702201648, 120125750018656, 661630546993116, 3656966382542984, 20278320788680912, 112782556853239712
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Maple
    a := n -> 2*add(binomial(n, k)*binomial(k, k/2)*binomial(2*(n-k), n-k)/(k+2), k = 0..n, 2): seq(a(n), n = 0..25);  # Peter Luschny, Nov 30 2024
  • Python
    from math import comb as binomial
    def a(n: int):
        return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(2*(n-k), n-k) for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Nov 30 2024

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*A126120(k)*A000984(n-k). - Mélika Tebni, Nov 30 2024

Extensions

a(12)-a(25) from Mélika Tebni, Nov 30 2024

A342770 T(n,k) is the number of rooted plane binary forests with n nodes and k trees: triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 3, 0, 1, 0, 1, 0, 5, 0, 3, 0, 1, 0, 1, 0, 0, 7, 0, 3, 0, 1, 0, 1, 0, 14, 0, 8, 0, 3, 0, 1, 0, 1, 0, 0, 22, 0, 8, 0, 3, 0, 1, 0, 1, 0, 42, 0, 24, 0, 8, 0, 3, 0, 1, 0, 1, 0, 0, 66, 0, 25, 0, 8, 0
Offset: 0

Views

Author

R. J. Mathar, Mar 21 2021

Keywords

Comments

Multiset transform of A126120.

Examples

			See A222006 showing T(6,k).
The triangle starts (n>=0, 0<=k<=n):
  1
  0   1
  0   0   1
  0   1   0   1
  0   0   1   0   1
  0   2   0   1   0   1
  0   0   3   0   1   0   1
  0   5   0   3   0   1   0   1
  0   0   7   0   3   0   1   0   1
  0  14   0   8   0   3   0   1   0   1
  0   0  22   0   8   0   3   0   1   0   1
  0  42   0  24   0   8   0   3   0   1   0   1
  0   0  66   0  25   0   8   0   3   0   1   0   1
  0 132   0  74   0  25   0   8   0   3   0   1   0   1
  0   0 217   0  76   0  25   0   8   0   3   0   1   0   1
		

Crossrefs

Cf. A222006 (row sums), A126120 (column k=1), A007595 (k=2), A046342 (k=3), A088327 (limit n->oo, row reverse).

A349935 Array read by ascending antidiagonals: A(n, k) is the n-th spin s-Catalan number, with s = k/2.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 5, 6, 4, 1, 1, 0, 15, 0, 5, 0, 1, 14, 36, 34, 16, 6, 1, 1, 0, 91, 0, 65, 0, 7, 0, 1, 42, 232, 364, 260, 111, 31, 8, 1, 1, 0, 603, 0, 1085, 0, 175, 0, 9, 0, 1, 132, 1585, 4269, 4600, 2666, 981, 260, 51, 10, 1, 1, 0, 4213, 0, 19845, 0, 5719, 0, 369, 0, 11, 0, 1
Offset: 1

Views

Author

Stefano Spezia, Dec 06 2021

Keywords

Examples

			The array begins:
n\k | 1    2    3    4    5    6
----+---------------------------
  1 | 1    1    1    1    1    1 ...
  2 | 0    1    0    1    0    1 ...
  3 | 2    3    4    5    6    7 ...
  4 | 0    6    0   16    0   31 ...
  5 | 5   15   34   65  111  175 ...
  6 | 0   36    0  260    0  981 ...
  ...
		

Crossrefs

Cf. A000012 (1st row), A059841 (2nd row).
Cf. A349934.

Programs

  • Mathematica
    T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; A[n_,k_]:=T[n,k(n+1)/2,k]-T[n,k(n+1)/2+1,k]; Flatten[Table[A[n-k+1,k],{n,12},{k,n}]]

Formula

A(n, k) = T(n, k*(n+1)/2, k) - T(n, k*(n+1)/2+1, k), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
A(n, 1) = A126120(n+1).
A(n, 2) = A005043(n+1).
A(3, n) = A000027(n+1).
A(4, 2*n) = A005891(n).
A(5, n) = A006003(n+1).

A171509 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A126931.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 33, 29, 9, 1, 110, 126, 57, 12, 1, 366, 518, 306, 94, 15, 1, 1220, 2052, 1494, 600, 140, 18, 1, 4065, 7925, 6849, 3389, 1035, 195, 21, 1, 13550, 30030, 30025, 17628, 6635, 1638, 259, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2009

Keywords

Comments

Equal to A053121*B^3, B = A007318.

Examples

			Triangle begins:
  1 ;
  3,1 ;
  10,6,1 ;
  33,29,9,1 ;
  110,126,57,12,1 ; ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -4, -3, -2, -1, 0 respectively.
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + Sum_{i>=0} T(n-1,k+1+i)*(-3)^i. - Philippe Deléham, Feb 23 2012

A171839 Equal to A171368*A007318.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 3, 2, 1, 0, 0, 6, 8, 3, 1, 0, 0, 15, 22, 15, 4, 1, 0, 0, 36, 68, 52, 24, 5, 1, 0, 0, 91, 198, 191, 100, 35, 6, 1, 0, 0, 232, 586, 651, 425, 170, 48, 7, 1, 0, 0, 603, 1718, 2203, 1656, 820, 266, 63, 8, 1, 0, 0, 1585, 5047, 7285, 6299, 3591, 1435, 392, 80
Offset: 0

Views

Author

Philippe Deléham, Dec 19 2009

Keywords

Comments

Another version of A114586.

Examples

			Triangle begins : 1 ; 0,0 ; 1,0,0 ; 1,1,0,0 ; 3,2,1,0,0 ; 6,8,3,1,0,0 ; ...
		

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A099323(n+1), A126120(n), A005043(n), A000957(n+1), A117641(n) for x = -2, -1, 0, 1, 2 respectively.

A202847 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A126930.

Original entry on oeis.org

1, -1, 1, 2, -2, 1, -3, 5, -3, 1, 6, -10, 9, -4, 1, -10, 22, -22, 14, -5, 1, 20, -44, 54, -40, 20, -6, 1, -35, 93, -123, 109, -65, 27, -7, 1, 70, -186, 281, -276, 195, -98, 35, -8, 1, -126, 386, -618, 682, -541, 321, -140, 44, -9, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 02 2013

Keywords

Examples

			Triangle begins
1
-1, 1
2, -2, 1
-3, 5, -3, 1
6, -10, 9, -4, 1
-10, 22, -22, 14, -5, 1
20, -44, 54, -40, 20, -6, 1
-35, 93, -123, 109, -65, 27, -7, 1
...
Production matrix begins
x, 1
1, x, 1
1, 1, x, 1
1, 1, 1, x, 1
1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, x, 1
..., with x = -1.
		

Crossrefs

Cf. (sequences with similar production matrix) A097609 (x=0), A033184 (x=1), A104259 (x=2), A171568 (x=3), A171589 (x=4)

Formula

T(n,k) = (-1)^(n-k)*A054336(n,k).
Sum_{k, 0<=k<=n}T(n,k)*x^k = (-1)^n*A126931(n), (-1)^n*A054341(n), A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively.

A302179 The number of 3D walks of length n in an octant returning to axis of origin.

Original entry on oeis.org

1, 1, 4, 9, 40, 120, 570, 1995, 9898, 38178, 195216, 805266, 4209084, 18239364, 96941130, 436235085, 2349133930, 10891439130, 59272544760, 281544587610, 1545550116240, 7489973640240, 41416083787260, 204122127237210, 1135679731004700, 5678398655023500, 31760915181412800, 160789633105902300
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Crossrefs

Programs

  • PARI
    C(n) = binomial(2*n, n)/(n+1); \\ A000108
    f(n) = binomial(n, floor(n/2)); \\ A001405
    a(n) = sum(i=0, n, if (!(i%2), sum(j=0, n-i, if (!(j%2), C(i/2)*C(j/2)*f(n-i-j)*n!/(i! * j! * (n-i-j)!))))); \\ Michel Marcus, Aug 07 2020

Formula

a(n) = Sum_{i=0..n, j=0..n-i, i,j even} A126120(i) * A126120(j) * A001405(n-i-j) * n!/(i! * j! * (n-i-j)!). - Nachum Dershowitz, Aug 06 2020
E.g.f.: (BesselI(1, 2*x)/x)^2*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Mélika Tebni, Jan 06 2025

Extensions

a(13)-a(27) from Nachum Dershowitz, Aug 04 2020
Previous Showing 51-59 of 59 results.