cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A254664 Numbers of words on alphabet {0,1,...,8} with no subwords ii, where i is from {0,1,...,5}.

Original entry on oeis.org

1, 9, 75, 627, 5241, 43809, 366195, 3060987, 25586481, 213874809, 1787757915, 14943687747, 124912775721, 1044133269009, 8727804479235, 72954835640907, 609822098564961, 5097441295442409, 42608996659234155, 356164297160200467
Offset: 0

Views

Author

Milan Janjic, Feb 04 2015

Keywords

Comments

a(n) is the number of nonary sequences of length n such that no two consecutive terms have distance 6. - David Nacin, May 31 2017

Crossrefs

Programs

  • Magma
    [n le 1 select 9^n else 8*Self(n)+3*Self(n-1): n in [0..20]];
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 3 a[n - 2]}, a[n], {n, 0, 20}]
    LinearRecurrence[{8,3},{1,9},20] (* Harvey P. Dale, Feb 16 2024 *)

Formula

G.f.: (1 + x)/(1 - 8*x -3*x^2).
a(n) = 8*a(n-1) + 3*a(n-2) with n>1, a(0) = 1, a(1) = 9.
a(n) = ((1+t)*(4-t)^(n+1)+(-1+t)*(4+t)^(n+1))/(6*t), where t=sqrt(19). [Bruno Berselli, Feb 04 2015]

A179598 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 3*x - 8*x^2).

Original entry on oeis.org

1, 5, 23, 109, 511, 2405, 11303, 53149, 249871, 1174805, 5523383, 25968589, 122092831, 574027205, 2698824263, 12688690429, 59656665391, 280479519605, 1318691881943, 6199911802669, 29149270463551, 137047105812005
Offset: 0

Views

Author

Johannes W. Meijer, Jul 28 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to 10 red king vectors, i.e., A[5] vectors, with decimal values 239, 351, 375, 381, 431, 471, 477, 491, 494, and 501. These vectors lead for the corner squares to A015525 and for the central square to A179599.
Inverse binomial transform of A126501.

Crossrefs

Cf. A126473 (side squares).

Programs

  • Maple
    with(LinearAlgebra): nmax:=21; m:=2; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:=[1,1,0,0,1,0,1,1,0]: A[5]:= [1,0,1,1,1,1,1,0,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);

Formula

G.f.: (1+2*x)/(1 - 3*x - 8*x^2).
a(n) = 3*a(n-1) + 8*a(n-2) with a(0) = 1 and a(1) = 5.
a(n) = ((41+5*sqrt(41))*A^(-n-1) + (41-5*sqrt(41))*B^(-n-1))/328 with A = (-3+sqrt(41))/16 and B = (-3-sqrt(41))/16.

A235118 Number of independent vertex subsets of the graph obtained by attaching two pendant edges to each vertex of the ladder graph L_n (L_n is the 2 X n grid graph; see A235117).

Original entry on oeis.org

1, 24, 544, 12416, 283136, 6457344, 147267584, 3358621696, 76597559296, 1746902974464, 39840303284224, 908607856050176, 20721936531193856, 472589633411088384, 10777996606218174464, 245805668662673145856, 5605905156051426082816, 127849665915439602991104
Offset: 0

Views

Author

Emeric Deutsch, Jan 14 2014

Keywords

Comments

Row sums of A235117.

Crossrefs

Cf. A235117.

Programs

  • Maple
    G := (1+4*x)/(1-20*x-64*x^2): Gser := series(G, x = 0, 22): seq(coeff(Gser, x, j), j = 0 .. 20);
  • PARI
    Vec((1 + 4*x) / (1 - 20*x - 64*x^2) + O(x^30)) \\ Colin Barker, Jul 31 2017

Formula

a(0)=1, a(1)=24, a(n) = 20*a(n-1) + 64*a(n-2) for n>=2.
G.f.: (1 + 4*x)/(1 - 20*x - 64*x^2).
a(n) = (((-7+sqrt(41))*(-2*(-5+sqrt(41)))^n + (2*(5+sqrt(41)))^n*(7+sqrt(41))) / (2*sqrt(41))). - Colin Barker, Jul 31 2017
a(n) = 4^n*A126501(n). - R. J. Mathar, Jul 26 2022

A254599 Numbers of words on alphabet {0,1,...,9} with no subwords ii, for i from {0,1}.

Original entry on oeis.org

1, 10, 98, 962, 9442, 92674, 909602, 8927810, 87627106, 860066434, 8441614754, 82855064258, 813228496354, 7981896981250, 78342900802082, 768941283068738, 7547214754035298, 74076463050867586, 727065885490090658, 7136204673817756610, 70042369148280534754
Offset: 0

Views

Author

Milan Janjic, Feb 02 2015

Keywords

Comments

a(n) is the number of sequences over {0,1,...,9} of length n such that no two consecutive terms have distance 9. - David Nacin, May 31 2017

Crossrefs

Programs

  • Magma
    [n le 1 select 10^n else 9*Self(n)+8*Self(n-1): n in [0..20]]; // Bruno Berselli, Feb 02 2015
    
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 10, a[n] == 9 a[n - 1] + 8 a[n - 2]}, a[n], {n, 0, 20}] (* Bruno Berselli, Feb 02 2015 *)
  • PARI
    Vec((1 + x)/(1 - 9*x - 8*x^2) + O(x^30)) \\ Colin Barker, Jan 22 2017

Formula

a(n) = 9*a(n-1) + 8*a(n-2) with n>1, a(0) = 1, a(1) = 10.
G.f.: (1 + x)/(1 - 9*x - 8*x^2). - Bruno Berselli, Feb 02 2015
a(n) = (2^(-1-n)*((9-r)^n*(-11+r) + (9+r)^n*(11+r))) / r, where r=sqrt(113). - Colin Barker, Jan 22 2017

A254659 Numbers of words on alphabet {0,1,...,8} with no subwords ii, where i is from {0,1,2,3}.

Original entry on oeis.org

1, 9, 77, 661, 5673, 48689, 417877, 3586461, 30781073, 264180889, 2267352477, 19459724261, 167014556473, 1433415073089, 12302393367077, 105586222302061, 906201745251873, 7777545073525289, 66751369314461677, 572898679883319861, 4916946285638867273
Offset: 0

Views

Author

Milan Janjic, Feb 04 2015

Keywords

Comments

a(n) is the number of nonary sequences of length n such that no two consecutive terms have distance 7. - David Nacin, May 31 2017

Crossrefs

Programs

  • Magma
    [n le 1 select 9^n else 8*Self(n)+5*Self(n-1): n in [0..20]];
    
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 5 a[n - 2]}, a[n], {n, 0, 20}]
  • PARI
    Vec((1 + x)/(1 - 8*x -5*x^2) + O(x^30)) \\ Colin Barker, Jan 22 2017

Formula

G.f.: (1 + x)/(1 - 8*x - 5*x^2).
a(n) = 8*a(n-1) + 5*a(n-2) with n>1, a(0) = 1, a(1) = 9.
a(n) = ((4-r)^n*(-5+r) + (4+r)^n*(5+r)) / (2*r), where r=sqrt(21). - Colin Barker, Jan 22 2017

A254662 Numbers of words on alphabet {0,1,...,7} with no subwords ii, where i is from {0,1,...,4}.

Original entry on oeis.org

1, 8, 59, 437, 3236, 23963, 177449, 1314032, 9730571, 72056093, 533584364, 3951258827, 29259564881, 216670730648, 1604473809179, 11881328856197, 87982723420916, 651523050515003, 4824609523867769, 35726835818619392, 264561679301939051, 1959112262569431533
Offset: 0

Views

Author

Milan Janjic, Feb 04 2015

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 8^n else 7*Self(n)+3*Self(n-1): n in [0..20]];
    
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == 7 a[n - 1] + 3 a[n - 2]}, a[n], {n, 0, 20}]
  • PARI
    Vec((1+x)/(1-7*x-3*x^2) + O(x^30)) \\ Colin Barker, Sep 08 2016

Formula

G.f.: (1 + x)/(1 - 7*x -3*x^2).
a(n) = 7*a(n-1) + 3*a(n-2) with n>1, a(0) = 1, a(1) = 8.
a(n) = (2^(-1-n) * ((7-sqrt(61))^n * (-9+sqrt(61)) + (7+sqrt(61))^n * (9+sqrt(61)))) / sqrt(61). - Colin Barker, Sep 08 2016
Previous Showing 11-16 of 16 results.