cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A125270 Coefficient of x^2 in polynomial whose zeros are 5 consecutive primes starting with the n-th prime.

Original entry on oeis.org

1358, 3954, 10478, 22210, 43490, 78014, 129530, 206650, 324350, 466270, 621466, 853742, 1132130, 1436690, 1870850, 2388050, 2886370, 3440410, 4133410, 4904906, 5926654, 7195670, 8425430, 9792950, 11040910, 12098990, 13917898, 16097810
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2007

Keywords

Comments

Sums of all distinct products of 3 out of 5 consecutive primes, starting with the n-th prime; value of 3rd elementary symmetric function on the 5 consecutive primes.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a, (Prime[x] Prime[x + 1] Prime[x + 2] + Prime[x] Prime[x + 1] Prime[x + 3] + Prime[x] Prime[x + 1] Prime[x + 4] + Prime[x] Prime[x + 2] Prime[x + 3] + Prime[x] Prime[x + 2] Prime[x + 4] + Prime[x] Prime[x + 3] Prime[x + 4] + Prime[x + 1] Prime[x + 2] Prime[x + 3] + Prime[x + 1] Prime[x + 2] Prime[x + 4] + Prime[x + 1] Prime[x + 3] Prime[x + 4] + Prime[x + 2] Prime[x + 3] Prime[x + 4])], {x, 1, 100}]; a
    fcp[{p_,q_,r_,s_,t_}]:=p*q(r+s+t)+(p+q)r(s+t)+(p+q+r)s*t; fcp/@Partition[ Prime[ Range[40]],5,1] (* Harvey P. Dale, Sep 05 2014 *)

Formula

Let p = Prime(n), q = Prime(n+1), r = Prime(n+2), s = Prime(n+3) and t = Prime(n+4). Then a(n) = p q (r+s+t) + (p + q) r (s + t) + (p + q + r) s t.

Extensions

Edited and corrected by Franklin T. Adams-Watters, Jan 23 2007

A287900 Numbers that are sums of 2,4,6,8 consecutive primes.

Original entry on oeis.org

227304, 660078, 724150, 1266696, 1571870, 2302644, 2809920, 2819160, 3863088, 4844886, 5755080, 11574906, 11882976, 14971620, 17526744, 17744130, 18886434, 22177052, 26324484, 27507192, 29899260, 31863798, 35716842, 35963850, 39851304, 41436306, 41490900
Offset: 1

Views

Author

Zak Seidov, Jun 02 2017

Keywords

Comments

Intersection of A001043, A034963, A127333 and A127335.
Positions of a(n) in A001043: {10760, 28407, 30910, 51588, 62912, 89404, 107456, 107778, 144230, 177821, 208613}.
Positions of a(n) in A034963: {5761, 15093, 16416, 27327, 33309, 47252, 56728, 56908, 76048, 93703, 109837}.
Positions of a(n) in A127333: {4004, 10452, 11355, 18899, 22983, 32581, 39092, 39211, 52346, 64499, 75556}.
Positions of a(n) in A127335: {3088, 8062, 8760, 14543, 17690, 25048, 30068, 30163, 40232, 49523, 57981}.

Crossrefs

Extensions

More terms from Alois P. Heinz, Jun 02 2017

A380433 Numbers that are a sum of both four and six consecutive prime numbers.

Original entry on oeis.org

72, 660, 724, 1788, 1956, 3300, 3348, 3528, 4280, 4520, 4920, 5064, 5250, 7764, 8412, 8598, 9210, 9378, 9456, 9920, 10134, 10974, 11256, 12054, 12762, 13830, 14106, 14184, 14294, 14826, 18180, 18600, 18876, 19380, 19922, 20344, 20900, 21636, 21728, 22286, 22608
Offset: 1

Views

Author

Andrej Jakobcic, Jan 24 2025

Keywords

Comments

All terms are even.

Examples

			72 = (13+17+19+23) = (5+7+11+13+17+19).
		

Crossrefs

Intersection of A034963 and A127333.
Previous Showing 11-13 of 13 results.