cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A127579 Primes of the form 64n+63.

Original entry on oeis.org

127, 191, 383, 1087, 1151, 1279, 1471, 1663, 2111, 2239, 2687, 2879, 3391, 3583, 3967, 4159, 4799, 5119, 5503, 6079, 6143, 6271, 6719, 6911, 7039, 7103, 7487, 8191, 8447, 8831, 9151, 9343, 9791, 10111, 10303, 10559, 10687, 11071, 11519, 11839
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(12000) | p mod 64 eq 63]; // Vincenzo Librandi, Aug 25 2012
    
  • Mathematica
    a = {}; Do[If[PrimeQ[64n + 63], AppendTo[a, 64n + 63]], {n, 1, 200}]; a
    Select[Prime[Range[4000]], MemberQ[{63}, Mod[#, 64]] &] (* Vincenzo Librandi, Aug 25 2012 *)
    Select[Range[63,12000,64],PrimeQ] (* Harvey P. Dale, Mar 01 2015 *)
  • PARI
    forprime(p=2,1e6,if(bitand(p,63)==63,print1(p", "))) \\ Charles R Greathouse IV, May 15 2013

A127593 Primes of the form 256 k + 85.

Original entry on oeis.org

853, 1109, 1621, 1877, 2389, 3413, 5717, 6229, 6997, 7253, 10069, 10837, 11093, 12373, 13397, 16981, 17749, 18517, 18773, 19541, 21589, 22613, 23893, 24917, 27733, 29269, 30293, 31573, 32341, 37717, 39509, 40277, 41813, 43093, 46933
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[85 + 256 n], AppendTo[a, 85 + 256 n]], {n, 0, 200}]; a
    Select[256*Range[200]+85,PrimeQ] (* Harvey P. Dale, Oct 09 2020 *)

A127594 Numbers k such that 256 k + 85 is prime.

Original entry on oeis.org

3, 4, 6, 7, 9, 13, 22, 24, 27, 28, 39, 42, 43, 48, 52, 66, 69, 72, 73, 76, 84, 88, 93, 97, 108, 114, 118, 123, 126, 147, 154, 157, 163, 168, 183, 184, 186, 196, 198
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[85 + 256 n], AppendTo[a, n]], {n, 0, 200}]; a

A127597 Least number k such that k 4^n + (4^n-1)/3 is prime.

Original entry on oeis.org

2, 1, 0, 2, 3, 2, 4, 4, 3, 10, 3, 3, 2, 7, 2, 25, 6, 17, 4, 13, 3, 20, 36, 20, 11, 27, 66, 23, 39, 24, 19, 13, 3, 10, 6, 122, 71, 58, 24, 13, 3, 2, 41, 10, 6, 32, 58, 17, 4, 79, 26, 55, 36, 48, 31, 28, 9, 2, 76, 24, 32, 28, 63, 20, 37, 9, 2, 7, 39, 10, 91, 47
Offset: 0

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k], {n, 0, 50}]; a (*Artur Jasinski*)
    lnk[n_]:=Module[{k=0,n4=4^n},While[!PrimeQ[k*n4+(n4-1)/3],k++];k]; Array[ lnk,60,0] (* Harvey P. Dale, May 28 2018 *)
  • Python
    from sympy import isprime
    def a(n):
        k, fourn = 0, 4**n
        while not isprime(k*fourn + (fourn-1)//3): k += 1
        return k
    print([a(n) for n in range(72)]) # Michael S. Branicky, May 18 2022

Extensions

Offset corrected and a(51) and beyond from Michael S. Branicky, May 18 2022

A127598 Least primes of the form k 4^n + (4^n-1)/3.

Original entry on oeis.org

2, 5, 5, 149, 853, 2389, 17749, 70997, 218453, 2708821, 3495253, 13981013, 39146837, 492131669, 626349397, 27201459541, 27201459541, 297784399189, 297784399189, 3665038759253, 3665038759253, 89426945725781
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k 4^n + (4^n - 1)/3], {n, 0, 50}]; a (*Artur Jasinski*)
Previous Showing 11-15 of 15 results.