cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A127578 Primes congruent to 31 mod 32.

Original entry on oeis.org

31, 127, 191, 223, 383, 479, 607, 863, 991, 1087, 1151, 1279, 1439, 1471, 1567, 1663, 1759, 1823, 1951, 2111, 2143, 2207, 2239, 2399, 2591, 2687, 2719, 2879, 3167, 3359, 3391, 3583, 3967, 4127, 4159, 4447, 4639, 4703, 4799, 4831, 5023, 5087, 5119, 5279
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

Extensions

Corrected by N. J. A. Sloane, Jul 11 2008
Edited by N. J. A. Sloane at the suggestion of R. J. Mathar, Jul 20 2008

A127577 Numbers n for which 32n+31 is prime.

Original entry on oeis.org

3, 5, 6, 11, 14, 18, 26, 30, 33, 35, 39, 44, 45, 48, 51, 54, 56, 60, 65, 66, 68, 69, 74, 80, 83, 84, 89, 98, 104, 105, 111, 123, 128, 129, 138, 144, 146, 149, 150, 156, 158, 159, 164, 168, 170, 171, 180, 188, 189, 191, 195, 198
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[32n + 31], AppendTo[a, n]], {n, 1, 200}]; a
    Select[Range[200],PrimeQ[32#+31]&] (* Harvey P. Dale, Dec 14 2024 *)

A101999 Primes of the form 64*k-1 such that 4*k-1, 8*k-1, 16*k-1 and 32*k-1 are also primes.

Original entry on oeis.org

2879, 858239, 1014719, 2029439, 2034239, 4068479, 4737599, 5454719, 9717119, 12968639, 17107199, 17962559, 25579199, 25945919, 29135999, 29859839, 30602879, 30735359, 32725439, 34214399, 34526399, 35925119, 36449279
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 2879 is a term.
		

Crossrefs

Subsequence of A127579.

Programs

  • Mathematica
    64#-1&/@Select[Range[570000],AllTrue[#*2^Range[2,6]-1,PrimeQ]&] (* Harvey P. Dale, Aug 07 2021 *)
  • PARI
    is(k) = if(k % 64 == 63, my(m = k\64 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 64*A101994(n) - 1 = 16*A101995(n) + 15 = 8*A101996(n) + 7 = 4*A101997(n) + 3 = 2*A101998(n) + 1. - Amiram Eldar, May 13 2024

A306431 Least number x > 1 such that n*x divides 1 + Sum_{k=1..x-1} k^(x-1).

Original entry on oeis.org

2, 3, 13, 7, 19, 31, 41, 31, 13, 19, 43, 31, 23, 83, 139, 31, 61, 67, 113, 79, 251, 43, 19, 31, 199, 23, 13, 167, 53, 139, 83, 127, 157, 67, 293, 431, 443, 151, 103, 79, 61, 251, 113, 47, 337, 19, 179, 31, 41, 199, 67, 23, 19, 499, 181, 367, 607, 139, 257, 359
Offset: 1

Views

Author

Paolo P. Lava, Apr 05 2019

Keywords

Comments

If n = 1, all the solutions of x | 1 + Sum_{k=1..x-1} k^(x-1) should be prime numbers, according to Giuga's conjecture.
If n*x | 1 + Sum_{k=1..x-1} k^(x-1), then certainly x does, so Giuga's conjecture would say x must be prime. Similarly if x^n divides it, so does x, so again Giuga would say x is prime. - Robert Israel, Apr 26 2019
E.g., the first solution for x^2 | 1 + Sum_{k=1..x-1} k^(x-1) is x = 1277, that is prime.

Examples

			a(4) = 7 because (1 + 1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6) / (4*7) = 67172 / 28 = 2399 and it is the least prime to have this property.
		

Crossrefs

Cf. A191677. All the solutions for n = m: A000040 (m=1), A002145 (m=2), A007522 (m=4), A127576 (m=8), A141887 (m=10), A127578 (m=16), A142198 (m=20), A127579 (m=32), A095995 (m=50).

Programs

  • Maple
    P:=proc(j) local k,n; for n from 2 to 10^6 do
    if frac((add(k^(n-1),k=1..n-1)+1)/(j*n))=0
    then RETURN(n); break; fi; od; end: seq(P(i),i=1..60);
  • Mathematica
    a[n_] := For[x = 2, True, x++, If[Divisible[1+Sum[k^(x-1), {k, x-1}], n x], Return[x]]];
    Array[a, 60] (* Jean-François Alcover, Oct 16 2020 *)
  • PARI
    a(n) = my(x=2); while (((1 + sum(k=1, x-1, k^(x-1))) % (n*x)), x++); x; \\ Michel Marcus, Apr 27 2019

Formula

Least solution of n*x | 1 + Sum_{k=1..x-1} k^(x-1), for n = 1, 2, 3, ...
Showing 1-4 of 4 results.