cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A035050 a(n) is the smallest k such that k*2^n + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 2, 1, 15, 12, 6, 3, 5, 4, 2, 1, 6, 3, 11, 7, 11, 25, 20, 10, 5, 7, 15, 12, 6, 3, 35, 18, 9, 12, 6, 3, 15, 10, 5, 6, 3, 9, 9, 15, 35, 19, 27, 15, 14, 7, 14, 7, 20, 10, 5, 27, 29, 54, 27, 31, 36, 18, 9, 12, 6, 3, 9, 31, 23, 39, 39, 40, 20, 10, 5, 58, 29, 15, 36, 18, 9, 13
Offset: 0

Views

Author

Keywords

Comments

From Ulrich Krug (leuchtfeuer37(AT)gmx.de), Jun 05 2010: (Start)
If a(i) = 2 * m then a(i+1) = m.
Proof: (I) a(i) = 2*m, 2*m * 2^i + 1 = m*2^(i+1) + 1 prime, so a(i+1) <= m;
(II) if a(i+1) = m-d for an integer d > 0, (m-d) * 2^(i+1) + 1 = (2*m-2*d) * 2^i + 1 prime;
(2m-2d) < 2m contradiction to a(i) = 2 * m, d = 0.
(End)
Conjecture: for n > 0, a(n) = k < 2^n, so k*2^n + 1 is a Proth prime A080076. - Thomas Ordowski, Apr 13 2019

Examples

			a(3)=2 because 1*2^3 + 1 = 9 is composite, 2*2^3 + 1 = 17 is prime.
a(99)=219 because 2^99k + 1 is not prime for k=1,2,...,218. The first term which is not a composite number of this arithmetic progression is 2^99*219 + 1.
		

Crossrefs

Analogous case is A034693. Special subscripts (n's for a(n)=1) are the exponents of known Fermat primes: A000215. See also Fermat numbers A000051.

Programs

  • Magma
    sol:=[];m:=1; for n in [0..82] do k:=0; while not IsPrime(k*2^n+1) do k:=k+1; end while; sol[m]:=k; m:=m+1; end for; sol; // Marius A. Burtea, Jun 05 2019
  • Mathematica
    a = {}; Do[k = 0; While[ ! PrimeQ[k 2^n + 1], k++ ]; AppendTo[a, k], {n, 0, 100}]; a (* Artur Jasinski *)
    Table[Module[{k=1,n2=2^n},While[!PrimeQ[k*n2+1],k++];k],{n,0,90}] (* Harvey P. Dale, May 25 2024 *)
  • PARI
    a(n) = {my(k = 1); while (! isprime(2^n*k+1), k++); k;}
    

Formula

a(n) << 19^n by Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Dec 10 2013

A127580 Numbers k such that 64k+63 is prime.

Original entry on oeis.org

1, 2, 5, 16, 17, 19, 22, 25, 32, 34, 41, 44, 52, 55, 61, 64, 74, 79, 85, 94, 95, 97, 104, 107, 109, 110, 116, 127, 131, 137, 142, 145, 152, 157, 160, 164, 166, 172, 179, 184, 185, 194, 197, 199
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[64n + 63], AppendTo[a, n]], {n, 1, 200}]; a

A127577 Numbers n for which 32n+31 is prime.

Original entry on oeis.org

3, 5, 6, 11, 14, 18, 26, 30, 33, 35, 39, 44, 45, 48, 51, 54, 56, 60, 65, 66, 68, 69, 74, 80, 83, 84, 89, 98, 104, 105, 111, 123, 128, 129, 138, 144, 146, 149, 150, 156, 158, 159, 164, 168, 170, 171, 180, 188, 189, 191, 195, 198
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[32n + 31], AppendTo[a, n]], {n, 1, 200}]; a
    Select[Range[200],PrimeQ[32#+31]&] (* Harvey P. Dale, Dec 14 2024 *)

A127586 Smallest strictly positive integer k such that (k+1)*2^n-1 is prime.

Original entry on oeis.org

2, 1, 1, 2, 1, 3, 1, 2, 4, 6, 4, 2, 1, 8, 4, 3, 1, 3, 1, 27, 13, 6, 25, 12, 38, 21, 10, 15, 7, 3, 1, 9, 4, 5, 2, 23, 11, 5, 2, 24, 23, 11, 5, 2, 13, 6, 19, 9, 4, 18, 10
Offset: 0

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Comments

The associated prime number list is (k+1)*2^n-1 = 2, 3, 7, 23, 31, 127, 127, 383, 1279, 3583, 5119, 6143, 8191, 73727 for n=0,1,2,3,4,... - R. J. Mathar, Jan 22 2007

Crossrefs

Programs

  • Maple
    A127586 := proc(n) local k; k:=1 ; while true do if isprime( (k+1)*2^n-1) then RETURN(k) ; fi ; k := k+1 ; od ; end: for n from 0 to 100 do printf("%d, ",A127586(n)) ; od ; # R. J. Mathar, Jan 22 2007
  • Mathematica
    a = {}; Do[k = 1; While[ ! PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k], {n, 0, 50}]; a

Formula

a(n)=A127587(n) if n is not in A000043. - R. J. Mathar, Jan 22 2007
a(n) << 19^n by Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Dec 10 2013

A127587 Smallest nonnegative integer k such that (k+1)*2^n-1 is prime.

Original entry on oeis.org

2, 1, 0, 0, 1, 0, 1, 0, 4, 6, 4, 2, 1, 0, 4, 3, 1, 0, 1, 0, 13, 6, 25, 12, 38, 21, 10, 15, 7, 3, 1, 0, 4, 5, 2, 23, 11, 5, 2, 24, 23, 11, 5, 2, 13, 6, 19, 9, 4, 18, 10, 20, 19, 9, 4, 2, 31, 15, 7, 3, 1, 0, 11, 5, 2, 66, 62, 42, 62, 39, 19, 9, 4, 14, 11, 5, 2, 54, 46, 29, 14, 29, 14, 63, 31, 15, 7
Offset: 0

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Comments

The associated prime number list is (k+1)*2^n-1 = 2,3,3,7,31,31,127,127,1279,3583,5119,6143,... for n=0,1,2,3,4,... - R. J. Mathar, Jan 22 2007

Crossrefs

Programs

  • Maple
    A127587 := proc(n) local k; k:=0 ; while true do if isprime( (k+1)*2^n-1) then RETURN(k) ; fi ; k := k+1 ; od ; end: for n from 0 to 100 do printf("%d, ",A127587(n)) ; od ; # R. J. Mathar, Jan 22 2007
  • Mathematica
    a = {}; Do[k = 0; While[ ! PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k], {n, 0, 50}]; a

Formula

a[A000043(j)]=0 for j=1,2,3,4,... - R. J. Mathar, Jan 22 2007
a(n) = A085427(n) - 1. - Filip Zaludek, Dec 16 2016

Extensions

More terms from R. J. Mathar, Jan 22 2007

A127589 Primes of the form 16k + 5.

Original entry on oeis.org

5, 37, 53, 101, 149, 181, 197, 229, 277, 293, 373, 389, 421, 613, 661, 677, 709, 757, 773, 821, 853, 997, 1013, 1061, 1093, 1109, 1237, 1301, 1381, 1429, 1493, 1621, 1637, 1669, 1733, 1861, 1877, 1973, 2053, 2069, 2213, 2293, 2309, 2341, 2357, 2389, 2437
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Comments

All terms are the sum of two squares.
Primes with least significant digit 5 in hexadecimal. - Alonso del Arte, Oct 21 2022

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[16n + 5], AppendTo[a, 16n + 5]], {n, 0, 200}]; a
    Select[16Range[200] + 5, PrimeQ] (* Alonso del Arte, Oct 21 2022 *)
  • PARI
    select(x->(x%16)==5, primes(500)) \\ Michel Marcus, Oct 24 2022

Extensions

Invalid comment removed by Zak Seidov, Jul 22 2010

A035089 Smallest prime of form 2^n*k + 1.

Original entry on oeis.org

2, 3, 5, 17, 17, 97, 193, 257, 257, 7681, 12289, 12289, 12289, 40961, 65537, 65537, 65537, 786433, 786433, 5767169, 7340033, 23068673, 104857601, 167772161, 167772161, 167772161, 469762049, 2013265921, 3221225473, 3221225473, 3221225473, 75161927681
Offset: 0

Views

Author

Keywords

Comments

a(n) is the smallest prime p such that the multiplicative group modulo p has a subgroup of order 2^n. - Joerg Arndt, Oct 18 2020

Crossrefs

Analogous case is A034694. Fermat primes (A019434) are a subset. See also Fermat numbers A000215.

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 1], k++ ]; AppendTo[a, k 2^n + 1], {n, 1, 50}]; a (* Artur Jasinski *)
  • PARI
    a(n)=for(k=1,9e99,if(ispseudoprime(k<Charles R Greathouse IV, Jul 06 2011

Extensions

a(0) from Joerg Arndt, Jul 06 2011

A127590 Numbers n such that 16n+5 is prime.

Original entry on oeis.org

0, 2, 3, 6, 9, 11, 12, 14, 17, 18, 23, 24, 26, 38, 41, 42, 44, 47, 48, 51, 53, 62, 63, 66, 68, 69, 77, 81, 86, 89, 93, 101, 102, 104, 108, 116, 117, 123, 128, 129, 138, 143, 144, 146, 147, 149, 152, 159, 167, 168, 171, 174, 177, 182, 191, 194
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[16n + 5], AppendTo[a, n]], {n, 0, 200}]; a
    Select[Range[0,200],PrimeQ[16#+5]&] (* Harvey P. Dale, Aug 31 2020 *)
  • PARI
    is(n)=isprime(16*n+5) \\ Charles R Greathouse IV, Feb 17 2017

A101998 Primes of the form 32*k-1 such that 4*k-1, 8*k-1, 16*k-1 and 64*k-1 are also primes.

Original entry on oeis.org

1439, 429119, 507359, 1014719, 1017119, 2034239, 2368799, 2727359, 4858559, 6484319, 8553599, 8981279, 12789599, 12972959, 14567999, 14929919, 15301439, 15367679, 16362719, 17107199, 17263199, 17962559, 18224639, 18857759
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 1439 is a term.
		

Crossrefs

Subsequence of A127578 and A101798.

Programs

  • Mathematica
    32 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = if(k % 32 == 31, my(m = k\32 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 32*A101994(n) - 1 = 8*A101995(n) + 7 = 4*A101996(n) + 3 = 2*A101997(n) + 1. - Amiram Eldar, May 13 2024

A101798 Primes of the form 32*k-1 such that 4*k-1, 8*k-1 and 16*k-1 are also primes.

Original entry on oeis.org

1439, 2879, 21599, 28319, 96959, 137279, 219839, 429119, 462719, 507359, 571199, 597599, 659999, 700319, 811199, 858239, 861599, 903359, 976799, 982559, 1014719, 1017119, 1067999, 1115519, 1333919, 1342079, 1837919, 2029439, 2034239
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 1439 is a term.
		

Crossrefs

Subsequence of A127578.
Subsequence: A101998.

Programs

  • Mathematica
    32 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
    Select[Prime[Range[200000]],Mod[#,32]==31&&AllTrue[{4,8,16} (#+1)/32-1,PrimeQ]&] (* Harvey P. Dale, Feb 20 2025 *)
  • PARI
    is(k) = if(k % 32 == 31, my(m = k\32 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 32*A101794(n) - 1 = 8*A101795(n) + 7 = 4*A101796(n) + 3 = 2*A101797(n) + 1. - Amiram Eldar, May 13 2024
Showing 1-10 of 18 results. Next