cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A128361 a(n) = least k such that the remainder when 21^k is divided by k is n.

Original entry on oeis.org

2, 19, 6, 17, 218, 15, 14, 13, 12, 11, 86, 9249, 214, 133, 69, 4084085, 106, 39, 422, 581831, 23, 5053, 38, 9237, 26, 775, 46, 1253, 206, 51, 82, 671, 34, 617741981, 58, 45, 202, 289, 87, 6401, 185, 217, 341, 3485351, 66, 2718013, 394, 111, 56, 8064317, 75
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000}]; k = 1; While[k < 3000000000, a = PowerMod[21, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k]; k++ ]; t (* Robert G. Wilson v, Jun 25 2009 *)
    lk[n_]:=Module[{k=1},While[PowerMod[21,k,k]!=n,k++];k]; Array[lk,60] (* The program takes a long time to run *) (* Harvey P. Dale, Oct 22 2016 *)

Extensions

a(16) - a(51) from Robert G. Wilson v, Jun 25 2009

A128362 a(n) = least k such that the remainder when 22^k is divided by k is n.

Original entry on oeis.org

3, 5, 19, 6, 17, 478, 25, 14, 13, 18, 187, 118, 15, 94, 1032913, 20, 64311245, 466, 3543, 58, 305197, 23, 1535, 46, 10623, 458, 5099785, 36, 2723, 454, 10617, 226, 55, 87, 35459, 140, 45, 446, 1373093, 51, 3604637279, 65, 75, 110, 23299, 57, 305, 52, 10599
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000}]; k = 1; While[k < 4000000000, a = PowerMod[22, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Jun 26 2009 *)

Extensions

a(15) - a(40) from Robert G. Wilson v, Jun 26 2009
a(41) - a(49) from Robert G. Wilson v, Jun 27 2009

A128363 a(n) = least k such that the remainder when 23^k is divided by k is n.

Original entry on oeis.org

2, 3, 5, 19, 262, 17, 58, 9, 10, 13, 14, 55, 86, 12153, 514, 111823, 95, 25, 30, 12147, 68, 235, 29, 280517, 56, 27, 502, 16805, 51, 49, 166, 35, 62, 1837, 38, 977969, 82, 39, 1370, 289, 122, 9822698929535, 65, 133, 697, 161, 303, 19445, 50, 147, 259, 1247
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 4000000000, a = PowerMod[23, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 04 2009 *)
    Table[Module[{k=1},While[PowerMod[23,k,k]!=n,k++];k],{n,35}] (* The program generates the first 35 terms of the sequence. *) (* Harvey P. Dale, Jul 18 2025 *)

Extensions

a(42), a(64) from Hagen von Eitzen, Aug 04 2009
a(750), a(770), a(234), a(274), a(406), a(600), a(610), a(754) from Daniel Morel, May 31, Aug 24, Sep 20 2010
a(84) from Max Alekseyev, Apr 13 2012

A128364 a(n) = least k such that the remainder when 24^k is divided by k is n.

Original entry on oeis.org

23, 11, 7, 5, 19, 10, 17, 142, 15, 566, 13, 78, 5865637, 205, 13809, 20, 589, 39, 35, 278, 129, 554, 459207143, 25, 148731221, 50, 63, 274, 2855, 33, 49, 34, 5429, 542, 5528521301, 42, 2773, 538, 185, 77, 3220589, 66, 90553, 956, 2317, 70, 161, 104
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000}]; k = 1; While[k < 3600000000, a = PowerMod[25, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Jun 29 2009 *)
    lk[n_] := Module[{k = 1}, While[PowerMod[24, k, k] != n, k++]; k]; Array[ lk,48] (* Harvey P. Dale, Jan 18 2019 *)

Extensions

a(13) - a(34) from Robert G. Wilson v, Jun 29 2009

A128365 a(n) = least k such that the remainder when 25^k is divided by k is n.

Original entry on oeis.org

2, 23, 11, 7, 10, 19, 57, 17, 14, 15, 614, 13, 34
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

a(14) > 10^15. - Max Alekseyev, Apr 14 2012

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 4000000000, a = PowerMod[25, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 04 2009 *)

A128366 a(n) = least k such that the remainder when 26^k is divided by k is n.

Original entry on oeis.org

5, 3, 23, 6, 7, 10, 19, 9, 17, 18, 15, 92, 18881, 319, 36091, 20, 203, 94, 49, 21, 42395, 42, 17553, 326, 106709, 27, 2062919, 36, 14099, 34, 35, 46, 850984699, 214, 5847, 44, 341, 58, 377, 106, 105, 634, 301265879, 158, 93107, 90, 759, 176, 187, 69, 685, 78
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

If a(199) exists, a(199) >= 148000000000. - Zhuorui He, Jul 24 2025

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000}]; k = 1; lst = {}; While[k < 1200000000, a = PowerMod[26, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]; If[a + 1 == k, AppendTo[lst, a]; Print@lst]]; k++ ]; lst (* Robert G. Wilson v, Jun 30 2009 *)

Extensions

a(27)-a(52) from Robert G. Wilson v, Jun 30 2009

A128367 a(n) = least k such that the remainder when 27^k is divided by k is n.

Original entry on oeis.org

2, 5, 6, 23, 11, 7, 25, 19, 10, 17, 718, 165, 35, 533, 33, 3738251, 178, 57, 142, 9779, 60, 2227273193, 55, 19659, 724, 17678421233, 29, 17473, 70, 19653, 209, 3005, 48, 28777, 694, 111, 346, 1441, 46, 15977, 86, 3399, 12614, 4387, 116, 527
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 4500000000, a = PowerMod[27, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)

Extensions

a(16) - a(25) from Robert G. Wilson v, Aug 06 2009

A128368 a(n) = least k such that the remainder when 28^k is divided by k is n.

Original entry on oeis.org

3, 13, 5, 6, 23, 11, 15, 194, 19, 18, 17, 148, 213, 22, 131209, 20, 2335, 25, 7311, 44, 259, 51, 5263, 38, 21927, 758, 240055, 29, 803, 58, 21921, 55, 4405, 39, 413, 316, 549, 746, 17831, 62, 4367, 106, 165, 74, 19253, 82, 6455, 88, 147, 734, 62093, 122
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 5000000000, a = PowerMod[28, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)

A128371 a(n) = least k such that the remainder when 31^k is divided by k is n.

Original entry on oeis.org

2, 29, 7, 29787, 13, 113413, 51, 23, 11, 3309, 38, 19, 21, 17, 22, 115, 118, 37237, 261, 60212617, 94, 29769, 134, 51205605391, 26, 35, 209, 549, 466, 1558391, 37, 5033228393, 58, 39, 926, 565, 57, 1561, 922, 119, 46, 2512157, 111, 949, 76, 85
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 4750000000, a = PowerMod[31, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)

Extensions

More terms from Ryan Propper, Mar 24 2007
a(494) = 14353729267 = 64609 * 222163. a(498) = 9547024387, a(540) = 29711794103. - Daniel Morel, Jun 17 2010. a(618) = 15150617101, a(750) = 13728669221. - Daniel Morel, Jun 28 2010

A128369 a(n) = least k such that the remainder when 29^k is divided by k is n.

Original entry on oeis.org

2, 3, 13, 5, 22, 23, 11, 9, 26, 19, 51, 17, 46, 15, 118, 178523, 152, 92634008921, 102, 24369, 82, 2873, 93, 25, 34, 27, 74, 11227, 31, 39259, 830, 69, 136, 817, 62, 2429, 66, 24351, 802, 121, 184, 3405997613, 714, 45, 398, 5846879, 794, 221, 114
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

a(408) = 9848641373 = 60343 * 163211.
a(756) = 10012502599 = 11 * 19 * 47906711.
a(886) = 12256265747, a(966) = 10085567837. - Daniel Morel, Jun 08 2010
a(378) = 31113438371, a(492) = 18377996647, a(730) = 22778710711. - Daniel Morel, Jul 05 2010
a(802) = 20290196677, a(826) = 21466370573. - Daniel Morel, Aug 24 2010

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 4000000000, a = PowerMod[29, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)
Previous Showing 11-20 of 27 results. Next