cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A094968 Indices of Fibonacci numbers in Stern's diatomic series A049456 regarded as a single linear sequence.

Original entry on oeis.org

1, 4, 7, 14, 25, 48, 91, 178, 349, 692, 1375, 2742, 5473, 10936, 21859, 43706, 87397, 174780, 349543, 699070, 1398121, 2796224, 5592427, 11184834, 22369645, 44739268, 89478511, 178956998, 357913969, 715827912, 1431655795, 2863311562
Offset: 0

Views

Author

Paul Barry, May 26 2004

Keywords

Comments

By definition, A049456(a(n))=Fib(n+2).
The rank of Fib(n+2) in row n of A049456 (regarded as an irregular triangle read by rows) is A128209(n) = A001045(n)+1. [Comment edited by N. J. A. Sloane, Nov 23 2016]

Crossrefs

Programs

  • PARI
    Vec((1 + x - 4*x^2) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^30)) \\ Colin Barker, Sep 29 2017

Formula

G.f. : (1+x-4*x^2) / ((1-x)*(1-x^2)*(1-2*x)).
a(n) = 2^n + n + Jacobsthal(n).
a(n) = A006127(n) + A001045(n).
From Colin Barker, Sep 29 2017: (Start)
a(n) = ((-1)^(1+n) + 2^(2+n) + 3*n) / 3.
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4) for n>3.
(End)

A231755 Primes of the form (2^n-1)/3 - n.

Original entry on oeis.org

331, 1398079, 89478457, 393530540239137101071, 1730765619511609209510165443073253, 8173309551284740577911184144801648979299941984979211421, 2142584059011987034055949456454883470029603991710390447068299
Offset: 1

Views

Author

K. D. Bajpai, Nov 13 2013

Keywords

Comments

a(14) has 671 digits. a(15) has 2820 digits (not included in b-file).
Alternately, primes of the form Jacobsthal(n) - n, where Jacobsthal(n) is the n-th Jacobsthal number.

Examples

			a(2)= 1398079: n=22: ((2^n-(-1)^n)/3-n)= 1398079, which is prime.
a(4)= 393530540239137101071: n=70: ((2^n-(-1)^n)/3-n)= 393530540239137101071, which is prime.
		

Crossrefs

Cf. A001045 (Jacobsthal numbers).
Cf. A107036 (indices of prime Jacobsthal numbers).
Cf. A128209 (Jacobsthal numbers+1).

Programs

  • Maple
    KD := proc() local a; a:= (2^n -(-1)^n)/3-n; if isprime(a)then RETURN (a); fi; end: seq(KD(),n=1..1000);
  • PARI
    for(n=8,500,if(ispseudoprime(t=2^n\/3-n),print1(t", "))) \\ Charles R Greathouse IV, Nov 13 2013

Extensions

Definition corrected by Charles R Greathouse IV, Nov 13 2013

A364378 Numbers whose representation in Jacobsthal greedy base (A265747) is palindromic.

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 12, 20, 22, 27, 36, 41, 44, 60, 68, 84, 86, 97, 112, 123, 132, 143, 158, 169, 172, 204, 220, 252, 260, 292, 308, 340, 342, 363, 396, 417, 432, 453, 486, 507, 516, 537, 570, 591, 606, 627, 660, 681, 684, 748, 780, 844, 860, 924, 956, 1020, 1028
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

A128209(n) = A001045(n) + 1 is a term for n >= 3, since its representation is two 1's with n-3 0's between them.
A084639(n) is a term for n >= 1 since its representation is n 1's.
A014825(n) is a term for n >= 1 since its representation is n-1 0's interleaved with n 1's.

Examples

			The first 10 terms are:
   n  a(n)  A265747(a(n))
  --  ----  -------------
   1     0              0
   2     1              1
   3     2              2
   4     4             11
   5     6            101
   6     9            111
   7    12           1001
   8    20           1111
   9    22          10001
  10    27          10101
		

Crossrefs

Programs

  • Mathematica
    palJacobQ[n_] := PalindromeQ[A265747[n]]; Select[Range[0, 1000], palJacobQ] (* using A265747[n] *)
  • PARI
    is(n) = {my(dig = digits(A265747(n))); dig == Vecrev(dig);} \\ using A265747(n)

A340849 a(n) = A001045(n) + A052928(n).

Original entry on oeis.org

0, 1, 3, 5, 9, 15, 27, 49, 93, 179, 351, 693, 1377, 2743, 5475, 10937, 21861, 43707, 87399, 174781, 349545, 699071, 1398123, 2796225, 5592429, 11184835, 22369647, 44739269, 89478513, 178956999, 357913971, 715827913
Offset: 0

Views

Author

Paul Curtz, Jan 24 2021

Keywords

Comments

a(2*n) is divisible by 3.
a(3*n+2) is divisible by 3.
a(n) is the minimum number of moves to solve a Towers of Hanoi puzzle with 4 pegs and n disks where a disk cannot move away from the destination peg (or symmetrically, a disk cannot return to the initial peg). - Woosuk Kwak, Jan 25 2024

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -1, -3, 2}, {0, 1, 3, 5}, 32] (* Robert P. P. McKone, Jan 28 2021 *)

Formula

a(n+1) - 2*a(n) = -A109613(n-2), for a(0)=0, a(1)=1. a(n) + a(n+1) = A100314(n).
a(n+1) - a(n) = A128209(n) for n >= 0.
a(n+2) = 1 + 2*A086445(n). - Hugo Pfoertner, Jan 24 2021
From Woosuk Kwak, Jan 25 2024: (Start)
a(n) = n + floor(2^n/3).
a(n) = n + A000975(n-1) for n >= 1. (End)
Previous Showing 11-14 of 14 results.