cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A130655 Catalan transform of Catalan numbers C(n+1).

Original entry on oeis.org

1, 2, 7, 28, 119, 524, 2363, 10844, 50446, 237280, 1126437, 5389916, 25967972, 125868952, 613385075, 3003586196, 14771851093, 72936101780, 361419276386, 1796837068400, 8960207761500
Offset: 0

Views

Author

Philippe Deléham, Jun 21 2007

Keywords

Crossrefs

Programs

  • Maple
    A130655 := proc(n)
        add(A106566(n,k)*A000108(k+1),k=0..n) ;
    end proc: # R. J. Mathar, Mar 01 2015
  • Mathematica
    CoefficientList[Series[2/(Sqrt[-1 + 2*Sqrt[1-4*x]] + Sqrt[1-4*x]),{x,0,20}],x] (* Vaclav Kotesovec, Jul 02 2015 *)
  • PARI
    x='x+O('x^50); Vec(2/(sqrt(-1 + 2*sqrt(1-4*x)) + sqrt(1-4*x))) \\ G. C. Greubel, Mar 21 2017

Formula

a(n) = Sum_{k=0..n} A106566(n,k)*A000108(k+1).
Conjecture: 3*n*(n-2)*(n+2)*a(n) +4*(-10*n^3+21*n^2+7*n-15)*a(n-1) +16*(11*n^3-47*n^2+57*n-15)*a(n-2) -8*(2*n-5)*(4*n-9)*(4*n-7)*a(n-3)=0. - R. J. Mathar, Mar 01 2015
G.f.: (C(x*C(x))-1)/(x*C(x)), where C(x) is g.f. of Catalan numbers A000108. - Vladimir Kruchinin, Jul 02 2015
a(n) ~ 2^(4*n+3/2) / (sqrt(Pi) * n^(3/2) * 3^(n-1/2)). - Vaclav Kotesovec, Jul 02 2015

A368938 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 * (1-x+x^2) ).

Original entry on oeis.org

1, 3, 14, 78, 479, 3129, 21332, 150057, 1081118, 7937589, 59174752, 446744610, 3408616155, 26242751046, 203615759472, 1590550846398, 12498584431503, 98731454253945, 783581338236326, 6245066800130298, 49961547869830135, 401076129627216180, 3229808459696023980
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+k, k)*binomial(4*n-k+2, n-2*k))/(n+1);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2*(1-x+x^2))/x)

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+k,k) * binomial(4*n-k+2,n-2*k).

A381826 G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x)^2), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 8, 41, 241, 1545, 10503, 74429, 543833, 4067510, 30985633, 239560975, 1874831287, 14823253892, 118222204539, 949963236834, 7683289712433, 62499664522578, 510992689465500, 4196824203859773, 34609480384100715, 286461380785102398, 2378954616256505177
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+1, k)*binomial(3*n-3*k, n-k))/(2*n+1);

Formula

a(n) = (1/(2*n+1)) * Sum_{k=0..n} binomial(2*n+1,k) * binomial(3*n-3*k,n-k).
D-finite with recurrence 12*n*(3*n+2)*(2*n+1)*(3*n+1)*a(n) +2*(-2365*n^4+2754*n^3-1799*n^2+834*n-144)*a(n-1) +2*(20215*n^4-89442*n^3+158117*n^2-135942*n+47592)*a(n-2) +(-181487*n^4+1469774*n^3-4524589*n^2+6309094*n-3370512)*a(n-3) +124*(n-3)*(2*n-7)*(1797*n^2-9448*n+12568)*a(n-4) -119164*(2*n-7)*(2*n-9)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Mar 10 2025

A381827 G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x)^3), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 10, 69, 562, 5042, 48100, 478547, 4908338, 51522174, 550758208, 5974753990, 65608248500, 727835313461, 8144965594184, 91834891588099, 1042244963201914, 11896871741939462, 136493661712053752, 1573151972820654218, 18205626549920314728, 211468167403628323318
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n-k+1, k)*binomial(4*n-4*k, n-k)/(3*n-k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*n-k+1,k) * binomial(4*n-4*k,n-k)/(3*n-k+1).
Previous Showing 11-14 of 14 results.