A339938
Odd non-coreful abundant numbers: the odd terms of A308127.
Original entry on oeis.org
15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 75075, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 105105
Offset: 1
15015 is a term since it is odd and the sum of its non-coreful divisors is A308135(15015) = 17241 > 15015.
-
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; s[1] = 0; s[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (fc @@@ FactorInteger[n]); Select[Range[1, 10^5, 2], s[#] > # &]
A348605
Odd nonexponential abundant numbers: odd numbers k such that A160135(k) > k.
Original entry on oeis.org
8505, 10395, 12285, 15015, 16065, 17955, 19635, 21735, 21945, 23205, 25515, 25935, 26565, 28875, 31185, 31395, 33495, 33915, 34125, 35805, 36855, 39585, 41055, 42315, 42735, 45885, 47355, 48195, 49665, 50505, 51765, 53865, 54285, 55965, 56595, 58695, 61215, 64155
Offset: 1
8505 is a term since A160135(8505) = 8862 > 8505.
-
esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[1, 65000, 2], q]
A379031
Odd modified exponential abundant numbers: odd numbers k such that A241405(k) > 2*k.
Original entry on oeis.org
15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655
Offset: 1
-
f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1, 10^5, 2], meAbQ]
-
is(k) = if(!(k%2), 0, my(f=factor(k)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*k);
A380932
Odd numbers k such that A380845(k) > 2*k.
Original entry on oeis.org
322245, 590205, 874665, 966735, 1934415, 2900205, 3224025, 3378375, 3869775, 4729725, 6081075, 6449625, 6818175, 7740495, 8783775, 8906625, 9029475, 9889425, 10135125, 10961685, 11609325, 11821425, 12900825, 13378365, 14189175, 15049125, 15481935, 15909075, 16253055
Offset: 1
322245 is a term since it is odd, and A380845(322245) = 679582 > 2 * 322245 = 644490.
-
q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k]; Select[Range[1,10^6,2], q]
-
isok(k) = if(!(k % 2), 0, my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k);
A357607
Odd numbers k such that A162296(k) > 2*k.
Original entry on oeis.org
4725, 6615, 7875, 8505, 11025, 14175, 15435, 17325, 19845, 20475, 22275, 23625, 24255, 25515, 26775, 28665, 29925, 31185, 33075, 36225, 36855, 37125, 37485, 38115, 39375, 40425, 41895, 42525, 46305, 47775, 48195, 50715, 51975, 53235, 53865, 55125, 57915, 59535
Offset: 1
4725 is a term since it is odd, and A162296(4725) = 9728 > 2*4725.
-
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[3, 60000, 2], q]
A294026
Odd unitary abundant numbers with a record small gap to the next odd unitary abundant number.
Original entry on oeis.org
15015, 19635, 21945, 25935, 33495, 1752135, 1915095, 1915305, 119104635, 134877405
Offset: 1
Odd unitary abundant numbers are 15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, ...
Their differences are 4620, 2310, 1260, 2730, 630, 4830, 2100, 420, ...
The records of small differences are 4620, 2310, 1260, 630, 420, ...
And the corresponding terms are 15015, 19635, 21945, 25935, 33495, ...
-
usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; ouaQ[n_] := OddQ[n] && usigma[n] > 2 n; s = Select[Range[100000], ouaQ]; a={}; dmin = 5000; Do[d=s[[j+1]]-s[[j]]; If[d
-
usig(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d));
isok(n) = (n%2) && (usig(n) > 2*n);
lista(nn) = {last = 0; gap = oo; forstep(n=1, nn, 2, if (isok(n), if (last, if (n - last < gap, print1(last, ", "); gap = n - last)); last = n;););} \\ Michel Marcus, Dec 15 2017
Comments