cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A307821 The number of exponential abundant numbers below 10^n.

Original entry on oeis.org

0, 0, 1, 12, 102, 1045, 10449, 104365, 1043641, 10436775, 104367354
Offset: 1

Views

Author

Amiram Eldar, Apr 30 2019

Keywords

Examples

			Below 10^3 there is only one exponential abundant number, A129575(1) = 900, thus a(3) = 1.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ esigma[k]>2k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq

Formula

Limit_{n->oo} a(n)/10^n = 0.001043673... is the density of exponential abundant numbers (see A129575). [Updated by Amiram Eldar, Sep 02 2022]

Extensions

a(11) from Amiram Eldar, Sep 02 2022

A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).

Original entry on oeis.org

1, 6, 12, 12, 24, 30, 36, 48, 72, 56, 96, 144, 108, 180, 216, 132, 150, 192, 288, 182, 336, 360, 432, 360, 324, 384, 576, 306, 648, 392, 380, 672, 720, 864, 672, 792, 900, 768, 552, 1152, 750, 1296, 1080, 1092, 972, 1344, 1440, 870, 1728, 2160, 992, 1584
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661).
The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - Amiram Eldar, May 06 2025

Crossrefs

Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697.

Programs

  • Mathematica
    psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after T. D. Noe at A001615 and Harvey P. Dale at A001694 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A323332(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        a = primefactors(m:=bisection(f,n,n))
        return m*prod(p+1 for p in a)//prod(a) # Chai Wah Wu, Sep 14 2024

A328135 Exponential 3-abundant numbers: numbers m such that esigma(m) >= 3m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

901800900, 1542132900, 1926332100, 2153888100, 2690496900, 2822796900, 3942584100, 4487660100, 4600908900, 5127992100, 6267888900, 6742052100, 7162236900, 7305120900, 8421732900, 8969984100, 9866448900, 10203020100, 10718460900, 11723411700, 11787444900, 12528324900
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

Aiello et al. found bounds on e-multiperfect numbers, i.e., numbers m such that esigma(m) = k * m for k > 2: 2 * 10^7 for k = 3, and 10^85, 10^320, and 10^1210 for k = 4, 5, and 6. The data of this sequence raise the bound for exponential 3-perfect numbers to 3 * 10^10.
The least odd term is (59#/2)^2 = 924251841031287598942273821762233522616225. The least term which is coprime to 6 is (239#/6)^2 = 3.135... * 10^190.
The least exponential 4-abundant number (esigma(m) >= 4m) is (31#)^2 = 40224510201185827416900. In general, the least exponential k-abundant number (esigma(m) >= k*m), for k > 2, is (A002110(A072986(k)))^2.
The asymptotic density of this sequence is Sum_{n>=1} f(A383699(n)) = 1.325...*10^(-9), where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)). - Amiram Eldar, May 06 2025

Crossrefs

Subsequence of A129575.
A383699 is a subsequence.
Cf. A023197, A307112, A285615 (unitary), A293187 (bi-unitary), A300664 (infinitary).

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^10], esigma[#] >= 3 # &]

A333928 Recursive abundant numbers: numbers k such that A333926(k) > 2*k.

Original entry on oeis.org

12, 18, 20, 30, 36, 42, 60, 66, 70, 78, 84, 90, 100, 102, 108, 114, 120, 126, 132, 138, 140, 144, 150, 156, 168, 174, 180, 186, 196, 198, 204, 210, 220, 222, 228, 234, 240, 246, 252, 258, 260, 270, 276, 282, 294, 300, 306, 308, 318, 324, 330, 336, 340, 342, 348
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Examples

			12 is a term since A333926(12) = 28 > 2 * 12.
		

Crossrefs

Analogous sequences: A005101, A034683 (unitary), A064597 (nonunitary), A129575 (exponential), A129656 (infinitary), A292982 (bi-unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[350], recDivSum[#] > 2*# &]

A335218 Exponential Zumkeller numbers: numbers whose exponential divisors can be partitioned into two disjoint subsets of equal sum.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 684, 828, 900, 1044, 1116, 1260, 1332, 1476, 1548, 1692, 1764, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3600, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4356, 4500, 4572, 4716, 4788, 4900
Offset: 1

Views

Author

Amiram Eldar, May 27 2020

Keywords

Comments

First differs from A318100 at n = 49: 4900 is a term that is not an exponential pseudoperfect number.

Examples

			36 is a term since its exponential divisors, {6, 12, 18, 36}, can be partitioned into 2 disjoint sets whose sum is equal: 6 + 12 + 18 = 36.
		

Crossrefs

The exponential version of A083207.
Subsequence of A129575.
A054979 is a subsequence.

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; eDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expDivQ[n, #] &]]; ezQ[n_] := Module[{d = eDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[10^4], ezQ]

A357605 Numbers k such that A162296(k) > 2*k.

Original entry on oeis.org

36, 48, 72, 80, 96, 108, 120, 144, 160, 162, 168, 180, 192, 200, 216, 224, 240, 252, 264, 270, 280, 288, 300, 312, 320, 324, 336, 352, 360, 378, 384, 392, 396, 400, 408, 416, 432, 448, 450, 456, 468, 480, 486, 500, 504, 528, 540, 552, 560, 576, 588, 594, 600, 612
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

The least odd term is a(470) = A357607(1) = 4725.
The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 5, 92, 1011, 10160, 102125, 1022881, 10231151, 102249758, 1022781199, 10229781638, ... . Apparently, the asymptotic density of this sequence exists and equals 0.102... .
An analog of abundant numbers, in which the divisor sum is restricted to nonsquarefree divisors. - Peter Munn, Oct 26 2022

Examples

			36 is a term since A162296(36) = 79 > 2*36.
		

Crossrefs

Cf. A162296.
Subsequence of A005101 and A013929.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[2, 1000], q]

A383693 Exponential unitary abundant numbers: numbers k such that A322857(k) > 2*k.

Original entry on oeis.org

900, 1764, 4356, 4500, 4900, 6084, 6300, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22500, 22932, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 36900, 38700, 40572, 42300, 42588, 44100, 47700, 47916, 49284, 49500
Offset: 1

Views

Author

Amiram Eldar, May 05 2025

Keywords

Comments

First differs from its subsequence A383697 at n = 21.
All the terms are nonsquarefree numbers (A013929), since A322857(k) = k if k is a squarefree number (A005117).
If an exponential abundant number (A129575) is exponentially squarefree (A209061), then it is in this sequence. Terms of this sequence that are not exponentially squarefree are a(21) = 22500, a(77) = 86436, a(140) = 157500, etc..
The least odd term is a(202273) = 225450225, and the least term that is coprime to 6 is a(1.002..*10^18) = 1117347505588495206025.
The asymptotic density of this sequence is Sum_{n>=1} f(A383694(n)) = 0.00089722..., where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)).

Examples

			900 is a term since A322857(900) = 2160 > 2*900 = 1800.
		

Crossrefs

Subsequence of A013929 and A129575.
Subsequences: A383694, A383697, A383698.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, GCD[#, e/#] == 1 &]; q[n_] := Times @@ f @@@ FactorInteger[n] > 2 n; Select[Range[50000], q]
  • PARI
    fun(p, e) = sumdiv(e, d, if(gcd(d, e/d) == 1, p^d));
    isok(k) = {my(f = factor(k)); prod(i = 1, #f~, fun(f[i, 1], f[i, 2])) > 2*k;}

A379029 Modified exponential abundant numbers: numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 120, 138, 150, 168, 174, 186, 210, 222, 246, 258, 270, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

All the squarefree abundant numbers (A087248) are terms since A241405(k) = A000203(k) for a squarefree number k.
If k is a term and m is coprime to k them k*m is also a term.
The numbers of terms that do no exceed 10^k, for k = 2, 3, ..., are 5, 67, 767, 7595, 76581, 764321, 7644328, 76468851, 764630276, ... . Apparently, the asymptotic density of this sequence exists and equals 0.07646... .

Crossrefs

Subsequence of A005101.
Subsequences: A034683, A087248, A379030, A379031.
Similar sequences: A064597, A129575, A129656, A292982, A348274, A348604.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1000], meAbQ]
  • PARI
    is(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*n;}

A383697 Exponential squarefree exponential abundant numbers: numbers k such that A361174(k) > 2*k.

Original entry on oeis.org

900, 1764, 4356, 4500, 4900, 6084, 6300, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22932, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 36900, 38700, 40572, 42300, 42588, 44100, 47700, 47916, 49284, 49500
Offset: 1

Views

Author

Amiram Eldar, May 06 2025

Keywords

Comments

Subsequence of A383693 and first differs from it at n = 21.
All the terms are nonsquarefree numbers (A013929), since A361174(k) = k if k is a squarefree number (A005117).
The least odd term is a(198045) = 225450225, and the least term that is coprime to 6 is a(9.815...*10^17) = 1117347505588495206025.
The least term that is not an exponentially squarefree number (A209061) is a(8.85...*10^1324) = 2^4 * Product_{k=2..248} prime(k)^2 = 1.00786...*10^1328.
The asymptotic density of this sequence is Sum_{n>=1} f(A383698(n)) = 0.000878475..., where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)).

Crossrefs

Subsequence of A013929, A129575 and A383693.
A383698 is a subsequence.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, SquareFreeQ[#] &]; q[k_] := Times @@ f @@@ FactorInteger[k] > 2*k; Select[Range[1000], q]
  • PARI
    ff(p, e) = sumdiv(e, d, if(issquarefree(d), p^d, 0));
    isok(k) = {my(f = factor(k)); prod(i=1, #f~, ff(f[i, 1], f[i, 2])) > 2*k; }

A336253 Exponential barely deficient numbers: exponential deficient numbers whose exponential abundancy is closer to 2 than that of any smaller exponential deficient number.

Original entry on oeis.org

1, 4, 72, 100, 144, 3528, 12100, 15876, 24336, 441000, 1334025, 2205000, 5664400, 24206400, 71267364, 151880976, 3252372552, 9346201200, 13319078472, 26828235000, 347372082000, 1851803856100, 2260121356900, 3198696480100, 5202286387272, 10330374528100, 16316106062400
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2020

Keywords

Comments

The exponential abundancy of a number k is esigma(k)/k, where esigma is the sum of exponential divisors of k (A051377).
Exponential deficient numbers are numbers k with esigma(k)/k < 2. These are numbers that are neither e-perfect (A054979) nor exponential abundant (A129575).
The corresponding values of the exponential abundancy are 1, 1.5, 1.666..., 1.8..., 1.833..., ...
All the terms are powerful numbers (A001694) because esigma(k)/k depends only on the powerful part of k (A057521). - Amiram Eldar, May 06 2025

Examples

			4 is a term since it is exponential deficient, and esigma(4)/4 = 3/2 is higher than esigma(k)/k for all the exponential deficient numbers k < 4.
		

Crossrefs

Subsequence of A001694.
Similar sequences: A302572, A228450, A262228, A307122, A336252, A336254.

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; rm = 0; s={}; Do[r = esigma[n]/n; If[r >= 2, Continue[]]; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^6}]; s

Extensions

a(21)-a(27) from Amiram Eldar, May 06 2025
Previous Showing 11-20 of 26 results. Next