cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A306366 For any sequence s of positive integers without infinitely many consecutive equal terms, let T(s) be the sequence obtained by replacing each run, say of k consecutive t's, with a run of t consecutive k's; this sequence corresponds to T(K) (where K denotes the Kolakoski sequence A000002).

Original entry on oeis.org

1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1
Offset: 1

Views

Author

Rémy Sigrist, Feb 10 2019

Keywords

Comments

If s is finite, then s and T(s) have the same sum.
Fixed points of T correspond to sequences where each run, say of t's, has t elements; A001650, A001670, A002024, A130196, A167817, A175944 and A213083 are fixed points of T.
When s has no consecutive equal terms, then T(s) is all 1's (A000012).
Apparently, T^4(K) = T^2(K) (where T^i denotes the i-th iterate of K).

Examples

			The first terms of the Kolakoski sequence are:
       +-----+     +--+  +-----+  +-----+     +--
       |     |     |  |  |     |  |     |     |
    +--+     +-----+  +--+     +--+     +-----+
    |#1|#2   |#3   |#4|#5|#6   |#7|#8   |#9   |#10 ...
    +--+-----+-----+--+--+-----+--+-----+-----+--
      1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, ...
.
The first terms of this sequence are:
       +-----+--+        +-----+  +-----+--
       |     .  |        |     |  |     .
    +--+     .  +-----+--+     +--+     .
    |#1|#2   .#3|#4   .#5|#6   |#7|#8   .#9  ...
    +--+-----+--+-----+--+-----+--+-----+--
      1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, ...
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(n) = A000002(ceiling(2*n/3)) (conjectured). - Jon Maiga, Jan 24 2021

A368148 Square array A(n, k), n, k > 0, read and filled in the greedy way by upwards antidiagonals such that A(n, k) corresponds to the size of the connected component (relative to the Von Neumann neighborhood) of terms equal to A(n, k) including the position (n, k).

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 1, 3, 3, 1, 2, 2, 3, 2, 2, 2, 1, 2, 2, 1, 2, 1, 3, 3, 1, 3, 3, 1, 2, 2, 3, 2, 2, 3, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1
Offset: 1

Views

Author

Rémy Sigrist, Dec 13 2023

Keywords

Comments

The array is doubly periodic (see first formula) and consists of the following repeating 3 X 3 pattern with two components of 1 1's, two components of 2 2's and one component of 3 3's:
+---+-------+
| 1 | 2 2 |
+---+---+---+
| 2 | 1 | 3 |
| +---+ |
| 2 | 3 3 |
+---+-------+

Examples

			Array A(n, k) begins:
  n\k | 1  2  3  4  5  6  7  8  9 10
  ----+-----------------------------
    1 | 1  2  2  1  2  2  1  2  2  1
    2 | 2  1  3  2  1  3  2  1  3  2
    3 | 2  3  3  2  3  3  2  3  3  2
    4 | 1  2  2  1  2  2  1  2  2  1
    5 | 2  1  3  2  1  3  2  1  3  2
    6 | 2  3  3  2  3  3  2  3  3  2
    7 | 1  2  2  1  2  2  1  2  2  1
    8 | 2  1  3  2  1  3  2  1  3  2
    9 | 2  3  3  2  3  3  2  3  3  2
   10 | 1  2  2  1  2  2  1  2  2  1
.
We can chose A(1, 1) = 1.
A(2, 1) cannot equal 1; we chose A(2, 1) = 2.
Likewise we chose A(1, 2).
A(2, 2) cannot equal 2 as this would imply a component with 3 or more 2's.
So, by necessity, we chose A(3, 1) = A(1, 3) = 2.
We chose A(2, 2) = 1.
We chose A(4, 1) = 1.
A(3, 2) cannot equal 1 or 2; we chose A(3, 2) = 3.
Likewise we chose A(2, 3) = 3.
We chose A(1, 4) = 1.
A(5, 1) cannot equal 1; we chose A(5, 1) = 2.
A(4, 2) cannot equal 1 (or 3); we chose A(4, 2) = 2.
By necessity, A(3, 3) = 3.
etc.
		

Crossrefs

Cf. A130196 (one-dimensional variant).

Programs

  • PARI
    A(n,k) = { [1,2,2; 2,1,3; 2,3,3][1+(n-1)%3, 1+(k-1)%3] }

Formula

A(n+3, k) = A(n, k+3) = A(n, k).
A(n, k) = A(k, n).

A177347 Decimal expansion of (5+sqrt(85))/10.

Original entry on oeis.org

1, 4, 2, 1, 9, 5, 4, 4, 4, 5, 7, 2, 9, 2, 8, 8, 7, 3, 1, 0, 0, 0, 2, 2, 7, 4, 2, 8, 1, 7, 6, 2, 7, 9, 3, 1, 5, 7, 2, 4, 6, 8, 0, 5, 0, 4, 8, 7, 2, 2, 4, 6, 4, 0, 0, 8, 0, 0, 7, 7, 5, 2, 2, 0, 5, 4, 4, 2, 6, 7, 1, 0, 2, 6, 8, 0, 1, 8, 7, 5, 4, 6, 0, 7, 6, 7, 8, 9, 4, 0, 9, 0, 7, 9, 3, 2, 8, 0, 5, 6, 4, 9, 4, 0, 3
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2010

Keywords

Comments

Continued fraction expansion of (5+sqrt(85))/10 is A130196.

Examples

			(5+sqrt(85))/10 = 1.42195444572928873100...
		

Crossrefs

Cf. A010536 (decimal expansion of sqrt(85)), A130196 (repeat 1, 2, 2).

Programs

  • Mathematica
    RealDigits[(5+Sqrt[85])/10,10,120][[1]] (* Harvey P. Dale, Dec 31 2011 *)

A267068 a(n) = (n+1) / A189733(n).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 2, 11, 1, 13, 2, 3, 2, 17, 1, 19, 2, 3, 2, 23, 1, 25, 2, 3, 2, 29, 1, 31, 2, 3, 2, 35, 1, 37, 2, 3, 2, 41, 1, 43, 2, 3, 2, 47, 1, 49, 2, 3, 2, 53, 1, 55, 2, 3, 2, 59, 1, 61, 2, 3, 2, 65, 1, 67, 2, 3, 2
Offset: 0

Views

Author

Paul Curtz, Jan 10 2016

Keywords

Comments

A189733(n) is the denominator of an autosequence of the first kind (the main diagonal is A000004).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 2 x + 3 x^2 + 2 x^3 + 5 x^4 + x^5 + 5 x^6 - 2 x^7 - 3 x^8 - 2 x^9 + x^10 - x^11)/((1 - x)^2 (1 + x)^2 (1 - x + x^2)^2 (1 + x + x^2)^2), {x, 0, 69}], x] (* or *)
    b[m_, n_] := b[m, n] = Which[m == n, 0, n == m + 1, (-1)^(n + 1)/n, n > m, b[m, n - 1] + b[m + 1, n - 1], n < m, b[m - 1, n + 1] - b[m - 1, n]]; Table[(n + 1)/Denominator@ b[0, n], {n, 0, 69}] (* Michael De Vlieger, Jan 15 2016, Jean-François Alcover at A189733 *)

Formula

a(2n+1) = A130196(n+1).
A052901(n+2) = period 3: 2, 3, 2 is at rank A047245(n+1) = 1, 2, 3, 7, 8, 9, ... .
Conjectures from Colin Barker, Jan 10 2016: (Start)
a(n) = 2*a(n-6) - a(n-12) for n>11.
G.f.: (1+2*x+3*x^2+2*x^3+5*x^4+x^5+5*x^6-2*x^7-3*x^8-2*x^9+x^10-x^11) / ((1-x)^2*(1+x)^2*(1-x+x^2)^2*(1+x+x^2)^2).
(End)
a(3n) + a(3n+1) + a(3n+2) = A047238(n+3).

A367705 Coefficients of expansion of (1 + 5*x + 11*x^2 + 5*x^3 + 7*x^4 + x^5)/(1 - x^3)^2 in powers of x.

Original entry on oeis.org

1, 5, 11, 7, 17, 23, 13, 29, 35, 19, 41, 47, 25, 53, 59, 31, 65, 71, 37, 77, 83, 43, 89, 95, 49, 101, 107, 55, 113, 119, 61, 125, 131, 67, 137, 143, 73, 149, 155, 79, 161, 167, 85, 173, 179, 91, 185, 191, 97, 197, 203, 103, 209, 215, 109, 221, 227, 115, 233, 239
Offset: 0

Views

Author

Philippe Deléham, Nov 27 2023

Keywords

Comments

Based on an idea of Pierre CAMI.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 5*x + 11*x^2 + 5*x^3 + 7*x^4 + x^5)/(1 - x^3)^2, {x, 0, 60}], x] (* or *)
    LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 5, 11, 7, 17, 23}, 60] (* Amiram Eldar, Nov 28 2023 *)

Formula

a(n) = 3*A006369(n) + A130196(n).
a(n) = A007310(A006369(n) + 1).
a(n) = 2*a(n-3) - a(n-6) for n >= 6.
a(3*n) = 6*n+1, a(3*n+1) = 12*n+5, a(3*n+2) = 12*n+11.
Sum_{n>=0} (-1)^n/a(n) = ((2+sqrt(2))*Pi + sqrt(3)*log(7+4*sqrt(3)) + sqrt(6)*log(5-2*sqrt(6)))/12. - Amiram Eldar, Nov 28 2023
Previous Showing 21-25 of 25 results.