cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A130237 The 'lower' Fibonacci Inverse A130233(n) multiplied by n.

Original entry on oeis.org

0, 2, 6, 12, 16, 25, 30, 35, 48, 54, 60, 66, 72, 91, 98, 105, 112, 119, 126, 133, 140, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 414, 423, 432, 441, 450, 459, 468, 477, 486, 550
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

  • Magma
    [n*Floor(Log(3/2 +n*Sqrt(5))/Log((1+Sqrt(5))/2)): n in [0..70]]; // G. C. Greubel, Mar 18 2023
    
  • Mathematica
    Table[n*Floor[Log[GoldenRatio, 3/2 +n*Sqrt[5]]], {n,0,70}] (* G. C. Greubel, Mar 18 2023 *)
  • SageMath
    [n*int(log(3/2 +n*sqrt(5), golden_ratio)) for n in range(71)] # G. C. Greubel, Mar 18 2023

Formula

a(n) = n*A130233(n).
a(n) = n*floor(arcsinh(sqrt(5)*n/2)/log(phi)).
G.f.: (1/(1-x))*Sum_{k>=1} (Fib(k) + x/(1-x))*x^Fib(k).

A130239 Maximal index k of the square of a Fibonacci number such that Fib(k)^2 <= n (the 'lower' squared Fibonacci Inverse).

Original entry on oeis.org

0, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007, May 28 2007

Keywords

Examples

			a(10) = 4 since Fib(4)^2 = 9 <= 10 but Fib(5)^2 = 25 > 10.
		

Crossrefs

Programs

Formula

a(n) = max(k | Fib(k)^2 <= n) = A130233(floor(sqrt(n))).
a(n) = floor(arcsinh(sqrt(5n)/2)/log(phi)), where phi=(1+sqrt(5))/2.
G.f.: (1/(1-x))*Sum_{k>=1} x^(Fib(k)^2).

A130244 Partial sums of the 'upper' Lucas Inverse A130242.

Original entry on oeis.org

0, 0, 0, 2, 5, 9, 13, 17, 22, 27, 32, 37, 43, 49, 55, 61, 67, 73, 79, 86, 93, 100, 107, 114, 121, 128, 135, 142, 149, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 309, 318, 327, 336, 345, 354, 363, 372, 381, 390
Offset: 0

Views

Author

Hieronymus Fischer, May 19 2007

Keywords

Crossrefs

Other related sequences: A000032, A130241, A130243, A130245, A130246, A130248, A130252, A130258, A130262. Fibonacci inverse see A130233 - A130240, A104162.

Programs

  • Magma
    [0,0] cat [(&+[Ceiling(Log(k + 1/2)/Log((1+Sqrt(5))/2)) : k in [0..n]]): n in [1..50]]; // G. C. Greubel, Sep 12 2018
  • Mathematica
    Join[{0, 0}, Table[Sum[Ceiling[Log[GoldenRatio, k + 1/2]], {k, 0, n}], {n, 1, 50}]] (* G. C. Greubel, Sep 12 2018 *)
  • PARI
    for(n=-1,50, print1(if(n==-1, 0, if(n==0, 0, sum(k=0, n, ceil(log(k + 1/2)/log((1+sqrt(5))/2))))), ", ")) \\ G. C. Greubel, Sep 12 2018
    

Formula

a(n) = Sum_{k=0..n} A130242(k).
a(n) = n*A130242(n) - A000032(A130242(n) +1) for n>=3.
G.f.: x/(1-x)^2*(2*x^2 + Sum{k>=2, x^Lucas(k)}).

A130256 Minimal index k of an odd Fibonacci number A001519 such that A001519(k) = Fibonacci(2*k-1) >= n (the 'upper' odd Fibonacci Inverse).

Original entry on oeis.org

0, 0, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Hieronymus Fischer, May 24 2007, Jul 02 2007

Keywords

Comments

Inverse of the odd Fibonacci sequence (A001519), nearly, since a(A001519(n))=n except for n=1 (see A130255 for another version).
a(n+1) is the number of odd Fibonacci numbers (A001519) <= n (for n >= 0).

Examples

			a(10)=4 because A001519(4) = 13 >= 10, but A001519(3) = 5 < 10.
		

Crossrefs

Cf. partial sums A130258.
Other related sequences: A000045, A001906, A130234, A130237, A130239, A130255, A130260.
Lucas inverse: A130241 - A130248.

Programs

  • Magma
    [0,0] cat [Ceiling((1/2)*(1 + Log(Sqrt(5)*n-1)/(Log((1+Sqrt(5))/2)))): n in [2..100]]; // G. C. Greubel, Sep 12 2018
  • Mathematica
    Join[{0, 0}, Table[Ceiling[1/2*(1 + Log[GoldenRatio, (Sqrt[5]*n - 1)])], {n, 2, 100}]] (* G. C. Greubel, Sep 12 2018 *)
  • PARI
    for(n=0,100, print1(if(n==0, 0, if(n==1, 0, ceil((1/2)*(1 + log(sqrt(5)*n-1)/(log((1+sqrt(5))/2)))))), ", ")) \\ G. C. Greubel, Sep 12 2018
    

Formula

a(n) = ceiling((1+arccosh(sqrt(5)*n/2)/log(phi))/2), where phi=(1+sqrt(5))/2.
G.f.: (x/(1-x))*Sum_{k>=0} x^Fibonacci(2*k-1).
a(n) = ceiling((1/2)*(1+log_phi(sqrt(5)*n-1))) for n >= 2, where phi=(1+sqrt(5))/2.

A130260 Minimal index k of an even Fibonacci number A001906 such that A001906(k) = Fib(2k) >= n (the 'upper' even Fibonacci Inverse).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Hieronymus Fischer, May 25 2007, May 28 2007, Jul 02 2007

Keywords

Comments

Inverse of the even Fibonacci sequence (A001906), since a(A001906(n))=n (see A130259 for another version).
a(n+1) is the number of even Fibonacci numbers (A001906) <=n.

Examples

			a(10)=4 because A001906(4)=21>=10, but A001906(3)=8<10.
		

Crossrefs

Cf. partial sums A130262. Other related sequences: A000045, A001519, A130234, A130237, A130239, A130256, A130259. Lucas inverse: A130241 - A130248.

Programs

  • Magma
    [0] cat [Ceiling(Log(Sqrt(5)*n)/(2*Log((1+ Sqrt(5))/2))): n in [1..100]]; // G. C. Greubel, Sep 12 2018
  • Mathematica
    Join[{0}, Table[Ceiling[Log[GoldenRatio, Sqrt[5]*n]/2], {n, 1, 100}]] (* G. C. Greubel, Sep 12 2018 *)
  • PARI
    for(n=0,100, print1(if(n==0, 0, ceil(log(sqrt(5)*n)/(2*log((1+ sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018
    

Formula

a(n) = ceiling(arcsinh(sqrt(5)*n/2)/(2*log(phi))) for n>=0.
a(n) = ceiling(arccosh(sqrt(5)*n/2)/(2*log(phi))) for n>=1.
a(n) = ceiling(log_phi(sqrt(5)*n)/2)=ceiling(log_phi(sqrt(5)*n-1)/2) for n>=1, where phi=(1+sqrt(5))/2.
a(n) = A130259(n-1) + 1, for n>=1.
G.f.: g(x)=x/(1-x)*Sum_{k>=0} x^Fib(2*k).

A130238 Partial sums of A130237.

Original entry on oeis.org

0, 2, 8, 20, 36, 61, 91, 126, 174, 228, 288, 354, 426, 517, 615, 720, 832, 951, 1077, 1210, 1350, 1518, 1694, 1878, 2070, 2270, 2478, 2694, 2918, 3150, 3390, 3638, 3894, 4158, 4464, 4779, 5103, 5436, 5778, 6129, 6489, 6858, 7236, 7623, 8019, 8424, 8838
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

  • Magma
    [(&+[j*Floor(Log(3/2 +j*Sqrt(5))/Log((1+Sqrt(5))/2)): j in [0..n]]): n in [0..70]]; // G. C. Greubel, Mar 18 2023
    
  • Mathematica
    a[n_]:= a[n]= Sum[j*Floor[Log[GoldenRatio, 3/2 +j*Sqrt[5]]], {j,0,n}];
    Table[a[n], {n,0,70}] (* G. C. Greubel, Mar 18 2023 *)
  • SageMath
    def A130238(n): return sum(j*int(log(3/2 +j*sqrt(5), golden_ratio)) for j in range(n+1))
    [A130238(n) for n in range(71)] # G. C. Greubel, Mar 18 2023

Formula

a(n) = Sum_{k=0..n} A130237(k).
a(n) = (n*(n+1)*A130233(n) - (Fib(A130233(n)) - 1)*(Fib(A130233(n) + 1) - 1))/2.
G.f.: (1/(1-x)^3)*Sum_{k>=1} (Fib(k)*(1-x) + x)*x^Fib(k).

A130247 Inverse Lucas (A000032) numbers: index k of a Lucas number such that Lucas(k)=n; max(k|Lucas(k) < n), if there is no such index.

Original entry on oeis.org

1, 0, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Hieronymus Fischer, May 19 2007, Jul 02 2007

Keywords

Comments

Inverse of the Lucas sequence (A000032), since a(Lucas(n))=n for n >= 0 (see A130241 and A130242 for other versions). Same as A130241 except for n=1.

Examples

			a(2)=0, since Lucas(0)=2; a(10)=4, since Lucas(4) = 7 < 10 but Lucas(5) = 11 > 10.
		

Crossrefs

For partial sums see A130248. Other related sequences: A000032, A130241, A130242, A130245, A130249, A130255, A130259. Indicator sequence A102460. For Fibonacci inverse see A130233 - A130240, A104162.

Programs

  • Mathematica
    Join[{1, 0}, Table[Floor[Log[GoldenRatio, n + 1/2]], {n, 3, 50}]] (* G. C. Greubel, Dec 21 2017 *)
  • Python
    from itertools import islice, count
    def A130247_gen(): # generator of terms
        yield from (1,0)
        a, b = 3, 4
        for i in count(2):
            yield from (i,)*(b-a)
            a, b = b, a+b
    A130247_list = list(islice(A130247_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n)=c(n), if (n^2-4)/5 is a square number, a(n)=s(n), if (n^2+4)/5 is a square number and a(n)=floor(log_phi(n)) otherwise, where s(n)=floor(arcsinh(n/2)/log(phi)), c(n)=floor(arccosh(n/2)/log(phi)) and phi=(1+sqrt(5))/2.
a(n) = A130241(n) except for n=2.
G.f.: g(x) = (1/(1-x))*(Sum_{k>=1} x^Lucas(k)) - x^2.
a(n) = floor(log_phi(n+1/2)) for n >= 3, where phi is the golden ratio.

A130258 Partial sums of the 'upper' odd Fibonacci Inverse A130256.

Original entry on oeis.org

0, 0, 2, 5, 8, 11, 15, 19, 23, 27, 31, 35, 39, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292
Offset: 0

Views

Author

Hieronymus Fischer, May 24 2007

Keywords

Crossrefs

Programs

  • Magma
    [0,0] cat [(&+[Ceiling((1/2)*(1 + Log(Sqrt(5)*k-1)/Log((1+Sqrt(5))/2))): k in [2..n]]): n in [2..50]]; // G. C. Greubel, Sep 13 2018
  • Mathematica
    Table[Sum[Ceiling[1/2*(1 + Log[GoldenRatio, (Sqrt[5]*k - 1)])], {k,2,n}], {n, 0, 50}] (* G. C. Greubel, Sep 13 2018 *)
  • PARI
    for(n=0, 50, print1(if(n==0, 0, if(n==1, 0, sum(k=2, n, ceil( (1/2)*(1 + log(sqrt(5)*k - 1)/log((1+sqrt(5))/2)))))), ", ")) \\ G. C. Greubel, Sep 13 2018
    

Formula

a(n) = n*A130256(n) - A001906(A130256(n) -1).
a(n) = n*A130256(n) - Fib(2*A130256(n)-2) - 1.
G.f.: g(x) = x/(1-x)^2*Sum_{k>=0} x^Fib(2*k-1).

A130262 Partial sums of the 'upper' even Fibonacci Inverse A130260.

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 14, 17, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 237, 242, 248, 254, 260, 266
Offset: 0

Views

Author

Hieronymus Fischer, May 25 2007

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [(&+[ Ceiling(Log(Sqrt(5)*k)/(2*Log((1+ Sqrt(5))/2))): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Sep 12 2018
  • Mathematica
    Table[Sum[Ceiling[Log[GoldenRatio, Sqrt[5]*k]/2], {k, 1, n}], {n, 0, 60}] (* G. C. Greubel, Sep 12 2018 *)
  • PARI
    for(n=0, 50, print1(sum(k=1,n, ceil(log(sqrt(5)*k)/(2*log((1+ sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018
    

Formula

a(n) = n*A130260(n) - A001519(A130260(n)) + 1.
a(n) = n*A130260(n) - Fib(2*A130260(n)-1) + 1.
G.f.: g(x)=x/(1-x)^2*Sum_{k>=0} x^Fib(2*k).
Previous Showing 11-19 of 19 results.