cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A214734 Sum_{k=1..n} floor(k*p/q), where (p,q) are either coprime positive integers or q=1 or p=1, n*p>=q, ordered by (n + p + q) ascending, then n ascending, then p ascending.

Original entry on oeis.org

1, 2, 3, 3, 1, 6, 6, 1, 4, 9, 2, 12, 10, 5, 1, 4, 12, 1, 18, 4, 20, 15, 1, 2, 6, 15, 3, 8, 24, 2, 30, 6, 30, 21, 1, 7, 1, 3, 7, 18, 30, 1, 5, 14, 40, 3, 45, 9, 42, 28, 1, 3, 8, 1, 4, 21, 1, 3, 7, 14, 36, 50, 2, 8, 21, 60, 5, 63, 12, 56, 36
Offset: 1

Views

Author

Renzo Benedetti, Jul 27 2012

Keywords

Comments

Since this is a sequence with 3 indexes (n,p,q), then the order proposed is an ordering by planes of 3D-discrete points (similar to a diagonal ordering of 2D-discrete points). It is not possible to order by rows, columns since n, p, q are boundless.
This sequence generalizes other sequences like A130518, A001840, A058937, A130519, A001972 and maybe others (most of those sequences are replica of each other up to an offset), by providing a closed formula (see formulas).

Examples

			a(n, 1, 3) = n*(n+1)/ 6 - floor(n/3) - Sum_{k=1..(n mod 3)} (k mod 3) = n*(n+1)/ 6 - floor(n/3) - (4 mod 3)/3 = A130518(n).
Example of the ordering (n,p,q): (1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,1,3), (1,3,1), (2,1,2), (2,2,1), (3,1,1), (1,1,4), ...
		

Formula

a(n, p, q) = Sum_{k=1..n} floor(k*p/q) defines the sequence.
a(n, p, q) = n*(n+1)*p/q/2 - floor(n/q) * (q-1)/2 - Sum_{k=1...(n mod q)} (k*p mod q)/q (the remaining sum has at most q-1 terms, and can assume at most q values when n varies, i.e., that sum for n is equal to the sum for n+q, so the computation of a(n, p, q) requires adding at most (q+1) terms). [Renzo Benedetti, Jul 27 2012]

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015

A182568 a(n) = 2*floor(n/4)*(n - 2*(1 + floor(n/4))).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 56, 64, 72, 80, 90, 100, 110, 120, 132, 144, 156, 168, 182, 196, 210, 224, 240, 256, 272, 288, 306, 324, 342, 360, 380, 400, 420, 440, 462, 484, 506, 528, 552, 576, 600, 624, 650, 676, 702, 728, 756, 784, 812, 840, 870, 900, 930, 960, 992, 1024, 1056, 1088, 1122, 1156, 1190, 1224, 1260, 1296, 1332, 1368
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2 Floor[n/4] (n - 2 (1 + Floor[n/4])), {n, 0, 20}] (* or *)
    Table[(5 - (-1)^n + 2 (n - 4) n - 4 Cos[n Pi/2])/8, {n, 0, 20}] (* or *)
    Table[(5 - (-1)^n - 2 (-I)^n - 2 I^n - 8 n + 2 n^2)/8, {n, 0, 20}] (* or *)
    LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 2}, 80] (* or *)
    CoefficientList[Series[-2 x^5/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 11 2018 *)

Formula

From R. J. Mathar, Jun 28 2012: (Start)
G.f. -2*x^5 / ( (x + 1)*(x^2 + 1)*(x - 1)^3 ).
a(n) = 2*A001972(n-5) = 2*A130519(n-1). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6). - Eric W. Weisstein, Sep 11 2018

A269445 a(n) = Sum_{k=0..n} floor(k/13).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 27 2016

Keywords

Comments

Partial sums of A090620.
More generally, the ordinary generating function for the Sum_{k=0..n} floor(k/m) is x^m/((1 - x^m)*(1 - x)^2).

Crossrefs

Cf. A090620.
Cf. similar sequences of Sum_{k=0..n} floor(k/m): A002620 (m=2), A130518 (m=3), A130519 (m=4), A130520 (m=5), A174709 (m=6), A174738 (m=7), A118729 (m=8), A218470 (m=9), A131242 (m=10), A218530 (m=11), A221912 (m=12), this sequence (m=13).

Programs

  • Mathematica
    Table[Sum[Floor[k/13], {k, 0, n}], {n, 0, 73}]
    LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2}, 74]

Formula

G.f.: x^13/((1 - x^13)*(1 - x)^2).
a(n) = 2*a(n-1) - a(n-2) + a(n-13) - 2*a(n-14) + a(n-15).
Previous Showing 21-24 of 24 results.