cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A130869 Partial sums of A130752.

Original entry on oeis.org

2, 7, 16, 32, 63, 126, 254, 511, 1024, 2048, 4095, 8190, 16382, 32767, 65536, 131072, 262143, 524286, 1048574, 2097151, 4194304, 8388608, 16777215, 33554430, 67108862, 134217727, 268435456, 536870912, 1073741823, 2147483646
Offset: 0

Views

Author

Paul Curtz, Jul 24 2007

Keywords

Formula

O.g.f.: (2-x)/[(1-x)(1-2x)(1-x+x^2)]. - R. J. Mathar, Jul 04 2008
Inverse binomial transform yields 2,(5,4,3) periodically continued with period 3. - R. J. Mathar, Jul 04 2008
a(n+1)-2a(n) = A131290(n+1). 2^(n+2)-a(n) = A131026(n+2).

Extensions

Edited and extended by R. J. Mathar, Jul 04 2008

A177767 Triangle read by rows: T(n,k) = binomial(n - 1, k - 1), 1 <= k <= n, and T(n,0) = A153881(n+1), n >= 0.

Original entry on oeis.org

1, -1, 1, -1, 1, 1, -1, 1, 2, 1, -1, 1, 3, 3, 1, -1, 1, 4, 6, 4, 1, -1, 1, 5, 10, 10, 5, 1, -1, 1, 6, 15, 20, 15, 6, 1, -1, 1, 7, 21, 35, 35, 21, 7, 1, -1, 1, 8, 28, 56, 70, 56, 28, 8, 1, -1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, -1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
Offset: 0

Views

Author

Roger L. Bagula, May 13 2010

Keywords

Comments

Row sums yield A000225 preceded by 1.
Except for signs, this is A135225.

Examples

			Triangle begins:
   1;
  -1, 1;
  -1, 1, 1;
  -1, 1, 2,  1;
  -1, 1, 3,  3,  1;
  -1, 1, 4,  6,  4,   1;
  -1, 1, 5, 10, 10,   5,   1;
  -1, 1, 6, 15, 20,  15,   6,  1;
  -1, 1, 7, 21, 35,  35,  21,  7,  1;
  -1, 1, 8, 28, 56,  70,  56, 28,  8, 1;
  -1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1;
   ...
		

Crossrefs

Programs

  • Magma
    A177767:= func< n,k | k eq n select 1 else  k eq 0 select -1 else Binomial(n-1, k-1) >;
    [A177767(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Apr 22 2024
    
  • Mathematica
    Flatten[Table[If[n == 0, {1}, CoefficientList[x*(1 + x)^( n - 1) - 1, x]], {n, 0, 10}]]
  • Maxima
    T(n, k) := if k = 0 then 2*floor(1/(n + 1)) - 1 else binomial(n - 1, k - 1)$
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Oct 23 2018 */
    
  • SageMath
    flatten([[binomial(n-1, k-1) - int(k==0) + 2*int(n==0) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 22 2024

Formula

Row n = coefficients in the expansion of x*(1 + x)^(n - 1) - 1, n > 0.
From Franck Maminirina Ramaharo, Oct 23 2018: (Start)
G.f.: (1 - 3*y + (2 + x)*y^2)/(1 - (2 + x)*y + (1 + x)*y^2).
E.g.f.: (2 + x - (1 + x)*exp(y) + x*exp((1 + x)*y))/(1 + x). (End)
From G. C. Greubel, Apr 22 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A153881(n+1) - [n=1].
Sum_{k=0..floor(n/2)} T(n-k, k) = A000071(n-1) + [n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = -A131026(n-1) + [n=0]. (End)

Extensions

Edited and new name by Franck Maminirina Ramaharo, Oct 23 2018
Previous Showing 11-12 of 12 results.