cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A379425 Decimal expansion of Ni_2 = gamma/3 - log(2*Pi)/2 - 2*zeta'(-1) + 2/3, where gamma = A001620.

Original entry on oeis.org

2, 7, 0, 9, 7, 5, 6, 4, 2, 4, 9, 6, 7, 4, 0, 0, 7, 0, 1, 8, 3, 0, 1, 3, 6, 1, 4, 1, 0, 7, 4, 1, 1, 1, 2, 2, 6, 8, 0, 7, 2, 8, 3, 9, 9, 0, 1, 2, 5, 9, 4, 6, 8, 7, 4, 5, 1, 1, 4, 8, 8, 1, 7, 1, 9, 3, 5, 7, 6, 2, 7, 8, 9, 9, 8, 4, 4, 8, 8, 3, 8, 1, 3, 6, 6, 2, 2, 5, 8, 9, 7, 9, 2, 9, 7, 8, 8, 9, 6, 6, 2, 6, 2, 9, 2
Offset: 0

Views

Author

Artur Jasinski, Dec 22 2024

Keywords

Examples

			0.270975642496740070183013614107411122680728399012594687451148817...
		

Crossrefs

Cf. A000796, A001620, A074962, A131688 (Ni_-1), A321943 (Ni_1), A379751 (Ni_3).

Programs

  • Mathematica
    RealDigits[EulerGamma/3 - Log[2 Pi]/2 + 2/3 - 2 Zeta'[-1], 10, 105][[1]]

Formula

Equals Sum_{s>=2} (-1)^(s)*zeta(s)/(s+2).
Equals A001620/3 - log(2*A000796)/2 + 2*log(A074962) + 1/2.

A379751 Decimal expansion of Ni_3 = gamma/4 - log(2*Pi)/2 - 3*zeta'(-1) + 3*zeta'(-2) + 7/12, where gamma = A001620.

Original entry on oeis.org

2, 1, 3, 6, 1, 6, 7, 7, 6, 2, 8, 0, 2, 1, 6, 7, 8, 2, 0, 0, 5, 6, 3, 6, 0, 0, 8, 7, 6, 3, 1, 9, 3, 8, 9, 9, 5, 8, 3, 5, 8, 3, 3, 8, 4, 0, 5, 1, 2, 1, 4, 3, 6, 2, 4, 5, 8, 2, 7, 4, 8, 5, 1, 0, 6, 6, 7, 5, 0, 2, 1, 4, 2, 6, 5, 4, 0, 9, 9, 2, 5, 6, 1, 8, 0, 1, 8, 3, 4, 6, 8, 7, 5, 2, 1, 8, 6, 0, 1, 7, 9, 4, 0, 3, 5
Offset: 0

Views

Author

Artur Jasinski, Jan 01 2025

Keywords

Crossrefs

Cf. A000796, A001620, A074962, A131688 (Ni_-1), A321943 (Ni_1), A379425 (Ni_2).

Programs

  • Mathematica
    RealDigits[EulerGamma/4 - Log[2 Pi]/2 - 3 Zeta'[-1] + 3 Zeta'[-2] + 7/12, 10, 105][[1]]

Formula

Equals Sum_{s>=2} (-1)^(s)*zeta(s)/(s+3).

A272286 Decimal expansion of Product_{k >= 1} (k*(k+1))^(-1/(k*(k+1))), a constant related to the alternating Lüroth representations of real numbers.

Original entry on oeis.org

1, 2, 9, 2, 1, 5, 0, 1, 8, 4, 0, 6, 0, 9, 9, 8, 4, 1, 3, 4, 1, 5, 7, 1, 9, 0, 0, 0, 7, 4, 2, 1, 9, 7, 7, 7, 1, 5, 7, 3, 3, 6, 4, 6, 2, 0, 3, 8, 6, 7, 8, 7, 4, 4, 8, 7, 7, 3, 0, 0, 0, 6, 2, 5, 3, 9, 4, 0, 0, 9, 6, 1, 8, 2, 9, 7, 1, 0, 4, 2, 7, 5, 4, 0, 3, 9, 6, 8, 0, 5, 6, 7, 7, 5, 3, 6, 5, 4, 5, 1, 7, 7, 3, 3, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 24 2016

Keywords

Examples

			0.1292150184060998413415719000742197771573364620386787448773...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Mathematica
    digits = 105; Exp[-NSum[((1 + (-1)^(n + 1))*Zeta[n + 1] - 1)/n, {n, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> 2 digits, NSumTerms -> 200]] // RealDigits[#, 10, digits]& // First

Formula

Exp(-Sum_{n >= 1} (((1 + (-1)^(n+1))*Zeta(n+1) - 1)/n)). - After Vaclav Kotesovec's formula for A244109.

Extensions

Offset corrected by Andrey Zabolotskiy, Dec 12 2023

A337128 Decimal expansion of Product_{k>=1} (1+1/k)^(1/k).

Original entry on oeis.org

3, 5, 1, 7, 4, 8, 7, 2, 5, 5, 9, 0, 2, 3, 6, 9, 6, 4, 9, 3, 9, 9, 7, 9, 3, 6, 9, 9, 3, 2, 3, 8, 6, 4, 1, 7, 0, 6, 8, 5, 6, 2, 0, 7, 8, 6, 7, 6, 4, 9, 3, 8, 1, 9, 7, 7, 5, 6, 8, 0, 0, 7, 9, 5, 4, 4, 1, 0, 3, 9, 0, 0, 4, 9, 8, 0, 7, 0, 6, 3, 8, 2, 2, 8, 6, 7, 3
Offset: 1

Views

Author

Michel Marcus, Sep 14 2020

Keywords

Examples

			3.517487255902369649399793699323864170685620786764938...
		

Crossrefs

Cf. A131688.

Programs

  • Mathematica
    First[RealDigits[Exp[NSum[Log[s]/(s(s-1)), {s, 2, Infinity}, NSumTerms -> 1000, Method -> {"NIntegrate", "MaxRecursion" -> 100}, WorkingPrecision -> 100]]]] (* Stefano Spezia, Jun 07 2024 *)

Formula

Equals exp(A131688). - Amiram Eldar, Sep 14 2020

Extensions

More terms from Amiram Eldar, Sep 14 2020

A373862 Decimal expansion of Sum_{k >= 1} log(k)/(k*sqrt(k+1)).

Original entry on oeis.org

3, 7, 7, 1, 0, 0, 9, 4, 9, 1, 4, 0, 0, 9, 2, 3, 2, 2, 6, 0, 7, 9, 0, 8, 1, 1, 3, 7, 6, 7, 7, 3, 3, 8, 4, 1, 2, 4, 3, 5, 0, 9, 3, 6, 9, 9, 8, 4, 2, 2, 3, 1, 9, 0, 7, 3, 0, 0, 0, 9, 4, 4, 5, 9, 5, 9, 1, 8, 9, 2, 3, 5, 5, 0, 5, 6, 2, 1, 7, 4, 2, 9, 2, 2, 9, 0, 5, 2, 2, 9, 5, 7, 1, 7, 9, 9, 3, 6, 0, 5, 6, 7, 4, 6, 3
Offset: 1

Views

Author

R. J. Mathar, Jun 19 2024

Keywords

Examples

			3.77100949140092...
		

Crossrefs

Cf. A131688.

Programs

  • Maple
    Digits := 120 ;
    x := 0.0 ;
    for l from 0 to 600 do
        x := x+(-1)^(l+1)*doublefactorial(2*l-1)/doublefactorial(2*l)*Zeta(1,3/2+l) ;
        x := evalf(x) ;
        print(x) ;
    end do: # R. J. Mathar, Jun 27 2024
  • PARI
    default(realprecision, 200); sumalt(k=0, (-1)^(k+1) * (2*k)! * zeta'(k+3/2) / (k!^2 * 4^k)) \\ Vaclav Kotesovec, Jun 27 2024

Formula

Equals sum_{l>=0} (-1)^(l+1) (2l-1)!! *Zeta'(3/2+l) /(2l)!!.

Extensions

More terms from Vaclav Kotesovec, Jun 27 2024

A373863 Decimal expansion of Sum_{k>=1} log(k)/(k^2-k+1).

Original entry on oeis.org

1, 0, 9, 8, 1, 0, 6, 7, 9, 1, 7, 5, 4, 4, 2, 2, 2, 0, 6, 9, 5, 1, 7, 6, 6, 5, 5, 3, 9, 6, 9, 7, 7, 9, 4, 9, 7, 0, 7, 2, 4, 7, 4, 5, 3, 6, 9, 7, 9, 6, 4, 4, 3, 6, 9, 5, 3, 7, 8, 2, 0, 9, 6, 9, 7, 7, 8, 6, 6, 6, 0, 4, 3, 7, 8, 3, 8, 4, 2, 4, 8, 3, 0, 1, 3, 0, 9, 2
Offset: 1

Views

Author

R. J. Mathar, Jun 19 2024

Keywords

Examples

			1.0981067917544222069517...
		

Crossrefs

Programs

  • Maple
    g := (1-e+e^2)^(-1) ;
    x :=0.0 ;
    for i from 0 to 350 do
        coeftayl(g,e=0,i) ;
        x-%*Zeta(1,2+i) ;
        x := evalf(%) ;
        print(%) ;
    end do:
  • PARI
    default(realprecision, 200); sumpos(k=1, log(k+1)/(k^2+k+1)) \\ Vaclav Kotesovec, Jun 28 2024

Formula

Equals Sum_{k>=1} log(k+1)/(k^2+k+1).

A386442 Decimal expansion of Sum_{k>=2} H(k) * (zeta(k) - 1), where H(k) is the k-th harmonic number.

Original entry on oeis.org

1, 6, 8, 0, 5, 3, 1, 2, 2, 2, 0, 4, 2, 8, 3, 6, 7, 6, 9, 4, 0, 3, 3, 8, 7, 7, 4, 0, 4, 1, 3, 4, 7, 9, 0, 9, 7, 4, 6, 9, 3, 8, 1, 5, 5, 4, 5, 6, 8, 9, 6, 1, 2, 7, 0, 1, 7, 1, 7, 7, 3, 5, 9, 8, 6, 3, 7, 6, 8, 2, 2, 6, 8, 1, 1, 6, 0, 8, 0, 2, 6, 4, 0, 3, 3, 8, 4, 3, 4, 0, 9, 8, 5, 8, 4, 4, 4, 2, 2, 8, 7, 3, 0, 8, 5
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2025

Keywords

Examples

			1.68053122204283676940338774041347909746938155456896...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[NIntegrate[HarmonicNumber[x]/x, {x, 0, 1}, WorkingPrecision -> 120] + 1 - EulerGamma][[1]]
  • PARI
    sumpos(k = 2, (k/(k-1))*log(k/(k-1)) - 1/k)

Formula

Equals 1 + Sum_{k>=2} (H(k) - 1) * (zeta(k) - 1).
Equals Sum_{k>=2} ((k/(k-1))*log(k/(k-1)) - 1/k) (Shamos, 2011).
Equals 1 + Sum_{k>=2} (-1)^k * zeta(k) / (k*(k-1)) (Shamos, 2011).
Equals M + 1 - gamma, where M = A131688 and gamma = A001620 (Boyadzhiev, 2019).
Previous Showing 11-17 of 17 results.