cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A132688 a(n) = binomial(2^n + 3*n, n).

Original entry on oeis.org

1, 5, 45, 680, 20475, 1533939, 350161812, 280384608504, 847073824772175, 9894081531608130857, 446730013630787463700695, 77328499046923986969058944720, 50891283683781760304442885961988100
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2007

Keywords

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), this sequence (3,0), A132689 (3,1).
Cf. A136555.

Programs

  • Magma
    [Binomial(2^n +3*n, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
  • Mathematica
    Table[Binomial[2^n+3n,n],{n,0,20}] (* Harvey P. Dale, Oct 30 2018 *)
  • PARI
    a(n)=binomial(2^n+3*n,n)
    
  • Sage
    [binomial(2^n +3*n, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
    

Formula

a(n) = [x^n] 1/(1-x)^(2^n + 2*n + 1).

A132689 a(n) = binomial(2^n + 3*n + 1, n).

Original entry on oeis.org

1, 6, 55, 816, 23751, 1712304, 377447148, 294109729200, 871896500955975, 10061777828754031380, 451004941990890693018405, 77739225019650285306412710240, 51039474754930845750609669420261300
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2007

Keywords

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), this sequence (3,1).
Cf. A136555.

Programs

  • Magma
    [Binomial(2^n+3*n+1, n) : n in [0..15]]; // Wesley Ivan Hurt, Nov 20 2014
    
  • Maple
    A132689:=n->binomial(2^n+3*n+1, n): seq(A132689(n), n=0..15); # Wesley Ivan Hurt, Nov 20 2014
  • Mathematica
    Table[Binomial[2^n +3n +1, n], {n, 0, 15}] (* Wesley Ivan Hurt, Nov 20 2014 *)
  • PARI
    a(n)=binomial(2^n+3*n+1,n)
    
  • Sage
    [binomial(2^n +3*n+1, n) for n in (0..15)] # G. C. Greubel, Feb 15 2021

Formula

a(n) = [x^n] 1/(1-x)^(2^n + 2*n + 2).
Previous Showing 11-12 of 12 results.