A289389
a(n) = Sum_{k>=0} (-1)^k*binomial(n,5*k+4).
Original entry on oeis.org
0, 0, 0, 0, 1, 5, 15, 35, 70, 125, 200, 275, 275, 0, -1000, -3625, -9500, -21250, -42500, -76875, -124375, -171875, -171875, 0, 621875, 2250000, 5890625, 13171875, 26343750, 47656250, 77109375, 106562500, 106562500, 0, -385546875, -1394921875, -3651953125
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
-
Table[Sum[(-1)^k*Binomial[n, 5 k + 4], {k, 0, n}], {n, 0, 36}] (* or *)
CoefficientList[Series[(-x^4)/((-1 + x)^5 - x^5), {x, 0, 36}], x] (* Michael De Vlieger, Jul 10 2017 *)
-
a(n) = sum(k=0, (n-4)\5, (-1)^k*binomial(n, 5*k+4)); \\ Michel Marcus, Jul 05 2017
A289387
a(n) = Sum_{k>=0} (-1)^k*binomial(n, 5*k+2).
Original entry on oeis.org
0, 0, 1, 3, 6, 10, 15, 20, 20, 0, -75, -275, -725, -1625, -3250, -5875, -9500, -13125, -13125, 0, 47500, 171875, 450000, 1006250, 2012500, 3640625, 5890625, 8140625, 8140625, 0, -29453125, -106562500, -278984375, -623828125, -1247656250, -2257031250
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
-
f:= gfun:-rectoproc({5*a(n)-10*a(n+1)+10*a(n+2)-5*a(n+3)+a(n+4), a(0)=0,
a(1)=0, a(2)=1, a(3) = 3,a(4)=6},a(n),remember):
map(f, [$0..40]); # Robert Israel, Jul 11 2017
-
Table[Sum[(-1)^k*Binomial[n, 5 k + 2], {k, 0, n}], {n, 0, 35}] (* or *)
CoefficientList[Series[-((-1 + x)^2 x^2)/((-1 + x)^5 - x^5), {x, 0, 35}], x] (* Michael De Vlieger, Jul 10 2017 *)
-
a(n) = sum(k=0, (n-2)\5, (-1)^k*binomial(n, 5*k+2)); \\ Michel Marcus, Jul 05 2017
A138003
Binomial transform of 1, 1, 0, -1, -1 (periodically continued).
Original entry on oeis.org
1, 2, 3, 3, 0, -8, -21, -34, -34, 0, 89, 233, 377, 377, 0, -987, -2584, -4181, -4181, 0, 10946, 28657, 46368, 46368, 0, -121393, -317811, -514229, -514229, 0, 1346269, 3524578, 5702887, 5702887, 0, -14930352, -39088169, -63245986, -63245986
Offset: 0
-
LinearRecurrence[{3,-4,2,-1},{1,2,3,3},50] (* Paolo Xausa, Dec 05 2023 *)
-
a=[1,2,3,3];for(i=1,99,a=concat(a,3*a[#a]-4*a[#a-1]+2*a[#a-2]-a[#a-3]));a \\ Charles R Greathouse IV, Jun 02 2011
A307078
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k-x^k).
Original entry on oeis.org
1, 1, 3, 1, 2, 7, 1, 2, 4, 15, 1, 2, 3, 8, 31, 1, 2, 3, 5, 16, 63, 1, 2, 3, 4, 10, 32, 127, 1, 2, 3, 4, 6, 21, 64, 255, 1, 2, 3, 4, 5, 12, 43, 128, 511, 1, 2, 3, 4, 5, 7, 28, 86, 256, 1023, 1, 2, 3, 4, 5, 6, 14, 64, 171, 512, 2047, 1, 2, 3, 4, 5, 6, 8, 36, 136, 341, 1024, 4095
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 2, 2, 2, 2, 2, 2, 2, 2, ...
7, 4, 3, 3, 3, 3, 3, 3, 3, ...
15, 8, 5, 4, 4, 4, 4, 4, 4, ...
31, 16, 10, 6, 5, 5, 5, 5, 5, ...
63, 32, 21, 12, 7, 6, 6, 6, 6, ...
127, 64, 43, 28, 14, 8, 7, 7, 7, ...
255, 128, 86, 64, 36, 16, 9, 8, 8, ...
511, 256, 171, 136, 93, 45, 18, 10, 9, ...
-
T[n_, k_] := Sum[Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
Comments